Lawrence, Steven and Giles, C. Lee. Accessibility of Information on the Web. Nature, Vol. 400, July 1999, p. 107-109.
Agosti, Maristella and Smeaton, Alan (editors). Information Retrieval and Hypertext. Kluwer Academic Publishers, 1996.
Heaps, H. S. Information retrieval, computational and theoretical aspects. Academic Press, 1978.
Salton, Gerard. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.
Carpineto, C. and Romano, G. Effective reformulation of Boolean queries with concept lattices. Datalogiske Skrifter, Issue.78, p. 83-94, Univ. Roskilde, 1998.
Lee, Joon Ho; Kim, Won Yong; Kim, Myoung Ho and Lee, Yoon Joon. On the evaluation of boolean operators in the extended boolean retrieval framework. Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Infofmation Retrieval, p. 291-297, 1993.
Kwon, Oh-Woog; Kim, Myoung-Cheol and Choi, Key-Sun. Query expansion using domain-adapted, weighted thesaurus in an extended Boolean model CIKM 94, Proceedings of the Third International Conference on Information and Knowledge Management, p. 140-146, 1994.
Bordogna, G.; Carrara, P. and Pasi, G. Extending Boolean information retrieval: A fuzzy model based on linguistic variables. IEEE International Conference on Fuzzy Systems, p. 769-776, IEEE, 1992.
Kraft, D.H.; Bordogna, G. and Pasi, G. An extended fuzzy linguistic approach to generalize Boolean information retrieval. Information Sciences, Applications, Vol.2 (3), p. 119-134, 1994.
Meadow, Charles T. Text Information Retrieval Systems. Academic Press, 1992.
van Rijsbergen, C. J. Information retrieval. Butterworths, 1979.
Cohen, J.D. Highlights: language- and domain-independent automatic indexing terms for abstracting. Journal of the American Society for Information Science, Vol.46 3, p. 162-174, 1995.
Cavnar, W. B. Using an N-gram-based document representation with a vector processing retrieval model. Text REtrieval Conference (TREC-3) (NIST SP 500-225), p. 269-77, 1995.
Oakes, Michael P. and Taylor, Malcolm J. Title Automated assistance in the formulation of search statements for bibliographic databases. Information Processing and Management, Vol.34 (6), p. 645-668, 1998.
Wiesman, F. and Hasman, A. A graphical user interface for biomedical literature search. Medical Informatics Europe '96: Human Facets in Information Technologies, p. 624-628, 1996.
Srinivasan, Padmini. Query expansion and MEDLINE. Information Processing and Management, 32 (4) , p. 431-444, 1996.
Salton, Gerard and Buckley, Chris. Term Weighting Approaches in Automatic Text Retrieval. Technical Report TR87-881, Department of Computer Science, Cornell University, 1987. Information Processing and Management Vol.32 (4), p. 431-443, 1996.
Luhn, H. P. The Automatic Creation of Literature Abstracts. IBM Journal of Research and Development 2 (2), p. 159-165 and 317, April 1958.
Zorman, Milan; Podgorelec, Vili and Kokol, Peter. Title Quest for the information: Using intelligent search for finding telemedical sites. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol.4, p. 4086-4091, 1998.
Vlajic, N. and Card, H. C. Categorizing Web pages using modified ART. Canadian Conference on Electrical and Computer Engineering, Vol.1, p. 313-316, 1998.
Gallant, S. I. A practical approach for representing context and for performing word sense disambiguation using neural networks. Neural Computation, 3 (3), p. 293-309, 1991.
Jing, Hongyan and Tzoukermann, Evelyne. Information retrieval based on context distance and morphology. SIGIR '99, Proceedings on the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 90-96, 1999.
Farkas, Jennifer. Improving the classification accuracy of automatic text processing systems using context vectors and back-propagation algorithms. Canadian Conference on Electrical and Computer Engineering, 2, p. 696-699, 1996.
Chakrabarti, S.; Dom, B.; Agrawal, R. and Raghavan, P. Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. VLDB Journal Vol.7 3, p. 163-178, 1998.
Bookstein, A.; Klein, S. T. and Raita, T. Detecting content bearing words by serial clustering. SIGIR Forum (ACM Special Interest Group on Information Retrieval), p. 319-327, 1995.
Lee, D. L., Chuang, Huei and Seamons, K. Document ranking and the vector-space model. IEEE Software, Vol.14 (2), p. 67-75, 1997.
Salton, Gerard. Automatic Text Processing. Addison-Wesley Publishing Company, 1988.
Raghavan, V. V. and Wong, S. K. M. A critical analysis of vector space model for information retrieval. Journal of the American Society for Information Science, Vol.37 (5), p. 279-87, 1986.
Fuhr, Norbert. Probabilistic Models in Information Retrieval. Computer Journal. 35 (3) , p. 243-55, 1992.
Kim, Won-Yong; Lee, Yoon-Joon and Kim, Myoung-Ho. Probabilistic retrieval with incrementally constructed knowledge. Proceedings of the IPSJ International Symposium on Information Systems and Technologies for Network Society, p. 241-248, 1997.
Kim, W.Y.; Kim, M.H. and Lee, Y.J. Probabilistic retrieval incorporating the relationships of descriptors incrementally. Information Processing and Management Vol.34 (4), p. 417-430, 1998
Deerwester, Scott; Dumais, Susan T.; Furnas, George W.; Landauer, Thomas K. and Harshman, Richard. Indexing by Latent Semantic Indexing. Journal of the American Society for Information Science. 41(6), p. 321-407, 1990.
Bartell, Brian T.; Cottrell, Garrison W. and Belew, Richard K. Latent Semantic Indexing is an optimal special case of multidimensional scaling. SIGIR Forum (ACM Special Interest Group on Information Retrieval), p. 161-167, 1992.
Story, Roger E. An explanation of the effectiveness of latent semantic indexing by means of a Bayesian regression model. Information Processing and Management, Vol.32 (3), p.329-344, 1996.
Syu, I.; Lang, S.D. and Deo, N. A neural network model for information retrieval using latent semantic indexing. ICNN 96, The 1996 IEEE International Conference on Neural Networks, p. 1318-23 vol.2, 1996.
Baker, L.D. and McCallum, A.K. Distributional clustering of words for text classification. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 96-103, 1998.
Willett, Peter. Recent Trends in Hierarchic Document Clustering: A Critical Review. Information Processing and Management Vol. 24, No 5, p. 577-597, 1988.
MacLeod, K. An application specific neural model for document clustering. Proceedings of the Fourth Annual Parallel Processing Symposium, vol.1, p. 5-16, 1990.
Douglass Cutting, David R. Karger, Jan O. Pedersen and John W. Tukey. Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections. In Proceedings of ACM/SIGIR, p. 318-329, 1992.
Zamir, O. and Etzioni, O. Web document clustering: a feasibility demonstration. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 46-54, 1998.
Schutze, Hinrich and Silverstein, Craig Projections for efficient document clustering. SIGIR Forum (ACM Special Interest Group on Information Retrieval), p. 74-81, 1997.
Sahami, Mehran; Yusufali, Salim and Baldonado, Michelle Q.W. Real-time full-text clustering of networked documents. Proceedings of the National Conference on Artificial Intelligence, p. 845, 1997.
Burgin, R. The retrieval effectiveness of five clustering algorithms as a function of indexing exhaustivity. Journal of the American Society for Information Science, Vol.46 (8), p. 562-72, 1995.
Li, Wei; Lee, Bob; Krausz, Franl and Sahin, Kenan. Text Classification by a Neural Network. Proceedings of the 1991 Summer Computer Simulation Conference. Twenty-Third Annual Summer Computer Simulation Conference,p. 313-318, 1991.
Farkas, Jennifer. Generating Document Clusters Using Thesauri and Neural Networks. Canadian Conference on Electrical and Computer Engineering, Vol.2, p. 710-713, 1994.
Joachims, Thorsten. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Machine Learning: ECML-98. 10th European Conference on Machine Learning, p. 137-42 Proceedings. 1998.
Svingen, B. Using genetic programming for document classification. FLAIRS-98. Proceedings of the Eleventh International Florida Artificial Intelligence Research, p. 63-67, 1998.
Hyotyniemi, H. Text document classification with self-organizing maps. STeP '96 - Genes, Nets and Symbols. Finnish Artificial Intelligence Conference, p. 64-72, 1996.
Merkl, D. Text classification with self-organizing maps: Some lessons learned. Neurocomputing Vol.21 (1-3), p. 61-77, 1998.
Benkhalifa, M., Bensaid, A. and Mouradi, A. Text categorization using the semi-supervised fuzzy c-means algorithm. 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS, p. 561-5, 1999.
Iwayama, M. and Tokunaga, T. Hierarchical Bayesian Clustering for automatic text classification. IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol.2, p. 1322-7, 1995.
Lam, Wai and Low, Kon-Fan Automatic document classification based on probabilistic reasoning: Model and performance analysis. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Vol.3, p. 2719-2723, 1997.
Nigam, Kamal; Maccallum, Andrew Kachites; Thrun, Sebastian and Mitchell, Tom. Text Classification from Labeled and Unlabeled Documents using EM. To appear in the Machine Learning Journal 1999. Draft.
Li, Y.H. and Jain, A.K. Classification of text documents. Computer Journal, 41 (8) , p. 537-46, 1998.