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Brain Tissues from MR Images: A

Probabilistic Neural Network Approach
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Abstract—This paper presents a probabilistic neural network
based technique for unsupervised quantification and segmenta-
tion of brain tissues from magnetic resonance images. It is shown
that this problem can be solved by distribution learning and
relaxation labeling, resulting in an efficient method that may be
particularly useful in quantifying and segmenting abnormal brain
tissues where the number of tissue types is unknown and the dis-
tributions of tissue types heavily overlap. The new technique uses
suitable statistical models for both the pixel and context images
and formulates the problem in terms of model-histogram fitting
and global consistency labeling. The quantification is achieved by
probabilistic self-organizing mixtures and the segmentation by
a probabilistic constraint relaxation network. The experimental
results show the efficient and robust performance of the new
algorithm and that it outperforms the conventional classification
based approaches.

Index Terms—Finite mixture models, image segmentation, in-
formation theoretic criteria, model estimation, probabilistic neu-
ral networks, relaxation algorithm.

I. INTRODUCTION

QUANTITATIVE analysis of brain tissues refers to the
problem of estimating tissue quantities from a given
image, and segmentation of the image into contiguous

regions of interest to describe the anatomical structures. The
problem has recently received much attention largely due to the
improved fidelity and resolution of medical imaging systems.
Because of its ability to deliver high resolution and contrast,
magnetic resonance (MR) imaging has been the dominant
modality for research on this problem [1]–[5]. In clinical
practice, MR images are typically analyzed by qualitative, or
semi-quantitative visualization and evaluation. The main focus
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of most automatic MR image analysis schemes has been on
image segmentation [2], [4], [6]–[9]. Tissue quantification, on
the other hand, alone or together with tissue segmentation, also
provides valuable information for brain tissue analysis [1], [5].
Pathological studies show that many neurological diseases are
accompanied by subtle changes in brain tissue quantities and
volumes [3]. Because of the practical difficulty for clinicians to
identify all pathological changes directly from medical images,
development of accurate and efficient image analysis systems
is of great importance.

Stochastic model-based methods have been by far the most
popular approach for quantification of brain tissues from
MR images [1], [3], [5], [10]–[12]. The stochastic model-
based approach typically employs a finite mixture model
that is shown to be a very suitable model for the task [1],
[3], [10]. Neural networks have also been employed for
image segmentation [2], [6], [7], [13], and recently, a cross
fertilization of the stochastic model based and neural network
approaches, probabilistic neural networks have emerged as
a powerful tool in MR image analysis [7], [14]. Probabilis-
tic neural networks provide valuable insight for designing
and learning in neural networks and offer efficient online
computation of the quantities of interest, a feature especially
important for evaluation of studies in a clinical setting, such as
MR image sequence analysis [12]. Furthermore, probabilistic
neural networks are particularly suitable for application to
quantitative analysis of MR images. In this paper, we present a
probabilistic neural network approach for efficient analysis of
brain tissues by using single-valued MR brain scans. The major
differences of our work from the previous research described
in [1], [3], [5], [9] are as follows.

1) We present two theorems to show that the correct use
of the standard finite normal mixture (SFNM) model in
MR brain tissue quantification does not require the pixel
images to be statistically independent.

2) We introduce and briefly describe a new information
theoretic criterion formulation following Jaynes’ princi-
ple: the minimum conditional bias and variance (MCBV)
criterion. We use three information theoretic criteria to
determine the appropriate number of tissue types in a
particular MR brain scan.

3) We introduce an on-line algorithm for parameter esti-
mation associated with tissue quantification: the prob-
abilistic self-organizing mixtures (PSOM) algorithm.
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We present comparative results to show its superior
performance in terms of faster rate of convergence and
lower floor of estimation error and introduce global
relative entropy (GRE) as the objective function for error
measure.

4) We introduce an efficient procedure for pixel classifica-
tion associated with tissue segmentation that is realized
by a probabilistic constraint relaxation network (PCRN).
PCRN might be considered as an extension of the
inhomogeneous Markov random field based approaches
[15].

Experimental results demonstrate the efficient and reliable
performance of the proposed scheme, in terms of the quan-
tification achieved by PSOM, consistent order determination
using three information criteria including MCBV, and the
satisfactory segmentation results by PCRN.

The paper is organized as follows. In Section II, we present
the stochastic modeling formulation, for both the tissue quan-
tification and the segmentation stages. We present the al-
gorithms to solve these problems in Section III along with
results using simulated data. Section IV presents examples,
with real MR data. These results demonstrate the accuracy
and reproducibility of the method and show the performance
of efficient automatic quantification and segmentation. We
present discussion of the results in Section V.

II. PROBLEM STATEMENT

In this section, we present the problem formulation and the
probabilistic network models used for tissue quantification and
segmentation.

A. Stochastic Modeling

In order to validate the use of a suitable stochastic model
for MR image analysis with a specified objective, we have
studied MR imaging statistics and observed several useful
statistical properties of MR images [16], [19]. These results
are strongly supported by the analysis of actual MR image
data [20]. In particular, based on the statistical properties
of MR pixel images, where pixel image is defined as the
observed gray level associated with the pixel, use of an
SFNM distribution is justified to model the image histogram,
and it is shown that the SFNM model converges to the
true distribution when the pixel images are asymptotically
independent [21]. Furthermore, by incorporating statistical
properties of context images, where context image is defined
as the membership of the pixel associated with different tissue
types, a localized SFNM formulation is proposed to impose
local consistency constraints on context images in terms of a
stochastic regularization scheme [16].

Assume that each pixel in the MR image can be decom-
posed into pixel image and context image By ignoring
information regarding the spatial ordering of pixels, we can
treat context images (i.e., pixel labels) as random variables and
describe them using a multinomial distribution with unknown
parameters Since it reflects the distribu-
tion of the total number of pixels in each tissue type (or
component), can be interpreted as a prior probability of

pixel labels determined by the global context information.
Thus, the relevant (sufficient) statistics are the pixel image
statistics for each component and the number of pixels of
each component. The marginal probability measure for any
pixel image, i.e., the SFNM distribution, can be obtained
by writing the joint probability density of and and then
summing the joint density over all possible outcomes of
i.e., resulting in a sum of the following
general form according to the Bayes law:

(1)

with and

where and are the mean and variance of theth
Gaussian kernel. We use to denote the number of Gaussian
components and to denote the total parameter
vector that includes and for all components.
Several observations are worth reiterating.

1) All pixel images are identically distributed from a
maximum-entropy mixture distribution and treated as
unclassifieddata [22]–[24].

2) The SFNM model uses the prior probabilities of pixel
label in the formulation instead of realizing its true value
for each pixel image.

3) Since the calculation of the histogram of pixel images
relies on the same mechanism as SFNM modeling, it
can be considered to be a sampled version of the true
pixel distribution [1].

Since the structure of the likelihood function in SFNM
model follows an identical distribution [25], the corresponding
ML estimation will be unbiased [26]. However, the price to
be paid for the stationary structure is that we cannot represent
local context explicitly, i.e., the pixel labels are hidden.
Because context information is of particular importance in
tissue segmentation, by assuming that the context images are
random variables with Markovian property [15], a localized
SFNM model is formulated. It explicitly incorporates local
context regularities into a consistent network structure. For
each pixel we define the spatial constraint as a local set of
all pairs such that the consistency betweenand
can be represented by the indicator function [2], [13],
[27]. Under this configuration, all pairs of labels are either
compatible (produce an output “1”) or incompatible (produce
an output “0”) [28]. We define the neighborhood of pixel
denoted by by opening a window with pixel being
the central pixel, where is assumed to be an odd integer.
Similar to the approach taken in [2], [4], and [13], we compute
the frequency of neighbors of pixelwith labels compatible
to a given label conditioning the labels of its neighbors

by

(2)
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and the localized SFNM distribution for directly follows by

(3)

The calculation of is same with that of however, its
scale is local and thus can be interpreted as theconditional
prior of the pixel label determined by the uncertainty contained
in The localized SFNM model hence provides a more
evident meaning than the SFNM model for tissue segmentation
[15], while the SFNM model has a better structure for tissue
quantification [23].

B. Tissue Quantification

Tissue quantification addresses the combined estimation of
tissue parameters and the detection of the tissue
structural parameter in (1) given the pixel images The
two main approaches used to determine these parameters
are classification-based estimation and distance minimization
approaches [25], [29]. In the classification-based approach, all
pixels are first classified into different components according
to a specified distance measure, and then, the model parameters
are estimated using sample averages by the ergodic theorems
[6], [9], [29]. In the distance minimization approach, the mix-
ture density is fitted to the histogram of pixel images by finding
the optimal parameters with respect to a distance measure
[1], [3], [21]. We use relative entropy (the Kullback–Leibler
distance) [26] for tissue quantification in MR images such
that it measures the information theoretic distance between
the histogram of the pixel images, denoted by and the
estimated SFNM distribution and is given by [26]

(4)

Note that the use of the relative entropy cost also overcomes
problems such as convergence at the wrong extreme faced
by the squared error cost function as it weighs errors more
heavily when probabilities are near zero and one, and diverges
in the case of convergence at the wrong extreme [17], [30].
We have shown that, when relative entropy is used as the
distance measure, distance minimization is equivalent to max-
imum likelihood (ML) estimation of SFNM parameters. The
conclusion is summarized by the following theorem [38].

Theorem 1: Consider a sequence of random variables
in Assume that the sequence is inde-

pendent and identically distributed (i.i.d.) by the distribution
Then, the joint likelihood function is determined

only by the histogram of data and is given by

(5)

where denotes the entropy with base[26]. Hence, maxi-
mization of joint likelihood function is equivalent to the
minimization of relative entropy

Thus, tissue quantification is formulated as a distribution
learning problem and quantification is achieved when the
relative entropy (4) is minimized, or by Theorem 1, when
the joint likelihood function is maximized. However,

spatial statistical dependence among pixel images is one
of the fundamental issues in problem formulation since the
calculation of the image histogram treats all pixel images as
independent random variables [1], [5]. In order to validate
the correct use of (4) in tissue quantification, we prove the
following theorem in [38] to show that the image histogram

converges to the true distribution with probability one
as

Theorem 2: Consider a sequence of random variables
in Assume that the sequence is

asymptotically independent [26] and identically distributed
by the SFNM distribution For a closed convex set
and distribution let be the distribution that
achieves the minimum distance to i.e.,

(6)

Then, when approaches infinity, we have

(7)

with probability one, i.e., the estimated distribution of
given that it achieves the minimum of is close to

for large
Thus, when is sufficiently large, minimization of the

relative entropy between and can be well approximated
by the minimization of the relative entropy betweenand
This fitting procedure can be practically implemented by max-
imizing the joint likelihood function under the independence
approximation of pixel images [18].

C. Tissue Segmentation

Anatomical structure, in addition to the results of tissue
quantification that reveals different tissue properties, provides
very valuable information in medical applications. Tissue
segmentation is a technique for partitioning the image into
meaningful regions corresponding to different objects. It may
be considered as a clustering process where the pixels are
classified into attributed tissue types according to their gray-
level values and spatial correlation [6]. A reasonable as-
sumption that can be made is that spatially close pixels are
likely to belong to the same tissue type [22]. Accordingly,
tissue segmentation addresses the realization of context images

given the observed pixel images Based
on the localized SFNM model (3), a deterministic relaxation
labeling can be used to update the context images after global
tissue quantification. With a motivation similar to the one
in [2] and [6], the technique seeks for a consistent labeling
solution where the criterion is to maximize global consistency
measure by using a system of inequalities. The structure of
relaxation labeling is motivated by two basic considerations: i)
decomposition of a global computation scheme into a network
performing simple local computations, and ii) use of suitable
local context regularities in resolving ambiguities.

We can define the consistency of discrete relaxation labeling
and formalize its relationship to global optimization as follows:
We first define the component in the localized SFNM distribu-
tion (3) as a support function consisting of the compatibility
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function and local likelihood

(8)

Note that the support function is a function of the com-
ponent (tissue type) Then, tissue segmentation is interpreted
as the satisfaction of a system of inequalities as follows:

(9)

for all and for where a consistent labeling is
defined as the one having maximum support at each pixelsi-
multaneously. We further define the average local consistency
measure

(10)

to link consistent labeling to global optimization [28]. It
is shown that when the spatial compatibility measure is
symmetric and attains a local maximum at then is
a consistent labeling [2], [8], [13], [28]. Hence, a consistent
labeling can be accomplished by locally maximizing

We can view consistency as a “locking-in” property, i.e.,
since the support function defined for a given pixel depends
on the current labels of neighboring pixels, this neighborhood
influences the update of the given pixel through probabilistic
compatibility constraints. With constraint propagation, the
relaxation process iteratively updates the label assignments to
increase the consistency, and ideally finds a more consistent
labeling with the neighboring labels, such that each pixel is
designated a unique label [2], [16].

III. T HEORY AND ALGORITHMS

Over the years, several unsupervised approaches have been
reported in the literature exploring quantitative analysis of MR
brain images [1], [5]. Currently, there are two main approaches
to the problem. In the first one, the maximum likelihood
quantification scheme, tissue types are first quantified using
maximum likelihood principle, where onlysoft classification
of the pixel images is required [1]. Further classification of
a sample is then performed by placing it into the class for
which the posterior probability or the support function is
maximum, i.e., by Bayesian consistent labeling [45], [46].
The quantities obtained by sample averages after imperfect
pixel classification may not be consistent with the previous
quantification result [23]. In the second approach, tissue quan-
tification and segmentation are performed simultaneously with
back and forth iterations between the two. In this case, the
prior and post quantification results will be consistent, however
the quantification and classification errors do interfere with
each other during the iterations. In this research, we deal
with tissue quantification and segmentation as two separate
objectives and use different optimality criteria. However, it is
worth reiterating the fact that the proposed method achieves
an unbiased ML tissue quantification, a step to be considered
independent from the following tissue segmentation step. In

what follows, we present the theory and algorithms for the two
stages: i) quantification that involves network order selection
and adaptive computation of the parameters to achieve soft
classification, and ii) segmentation that uses the order and the
parameters computed in the quantification stage to perform
hard classification by incorporating local context constraints.

A. Adaptive Model Selection

Since the prior knowledge of the true structure of a real im-
age is generally not available, it is most often desirable to have
a neural network structure that is adaptive, in the sense that the
number of local components (i.e., hidden nodes) is not fixed
beforehand. Both for PSOM and PCRN, using a smaller or
larger number of mixture components (local components in the
network) than the number of tissue types actually represented
on a particular slice will result in incorrect identification and
quantification of the tissues in a particular slice. This situation
is particularly critical in a real clinical application where the
structure of the individual slice for a particular patient may be
arbitrarily complex. The objective of adaptive model selection
is to propose a systematic strategy for the determination of
the structure of the network, i.e., the number of hidden nodes
(or mixture components) in the two probabilistic neural
networks: the PSOM and the PCRN. One approach to deter-
mine the optimal number is to use information theoretic
criteria, such as the Akaike information criterion (AIC) [31],
[32], and the minimum description length (MDL) [5], [33].
The major thrust of this approach has been the formulation
of a structural learning in which a model fitting procedure is
utilized to select a model from several competing candidates
such that the selected modelbest fits the observed data.

For example, AIC will select the model that gives the
minimum of

(11)

where is the likelihood of the ML parameter
estimates, and is the number of free adjustable parameters
in the model. The AIC tries to formulate the problem explicitly
as a problem ofapproximationof the true structure by the
model. It implies that the correct number of distinctive image
regions can be obtained by minimizing AIC. From a
quite different point of view, MDL reformulates the problem
explicitly as an information coding problem in which the best
model fit is measured such that high probabilities are assigned
to the observed data while at the same time the model itself
is not too complex to describe [33]. The model is selected by
minimizing the total description length defined by

(12)

Note that, different from AIC, the second term in MDL
takes into account the number of observations. However, the
justifications for the optimality of these two criteria with
respect to tissue quantification or classification are somewhat
indirect and remain unresolved [5], [21], [25], [31].

In this section, we present a new formulation of information
theoretic criterion, theminimum conditional bias and variance
criterion, to address the model selection problem. Akaike and
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Rissanen’s work on information theoretic criteria have cer-
tainly been the inspirational source to this work, however, in
our work, we present a new interpretation and justification by
information theoretic means [18]. Our approach has a simple
optimal appeal in that it selects a minimum conditional bias
and variance model, i.e., if two models are about equally likely,
MCBV selects the one whose parameters can be estimated
with the smallest variance.

New formulation is based on the fundamental argument that
the value of the structural parameter can not be arbitrary or
infinite, because such an estimate might be said to have low
“bias” but the price to be paid is high “variance” [34]. We can
obtain a formulation by using Jaynes’ principle, which states
that “the parameters in a model which determine the value
of the maximum entropy should be assigned values which
minimize the maximum entropy” [35]. Let joint entropy of

and be It is shown that
the maximum of conditional entropy is precisely the
negative of the logarithm of the likelihood function
corresponding to the entropy-maximizing distribution for
[33]. We have

(13)

where uniform randomization in the SFNM modeling corre-
sponds to the maximum uncertainty [22], [23]. Furthermore,
maximizing the entropy of the parameter estimates
results in

(14)

where we have used the result that, given the variance of
parameter estimate determined by the corresponding sample
average, the normal and independent distributiongives the
maximum entropy [24], [26], [36].

Since the joint maximum entropy is a function of and
by taking the advantage of the fact that model estimation is

separable in components and structure, we define the MCBV
criterion as

(15)

where is the conditional bias (a form of
information theoretic distance) [24], [26], and
is the conditional variance (a measure of model uncertainty)
[24], [36], of the model. As both of these two terms represent
natural estimation errors about the true models, we treat
them on an equal basis. A minimization of the expression
in (15) leads to the following characterization of the optimum
estimation:

(16)

That is, if the cost of model variance is defined as the entropy
of parameter estimates, the cost of adding new parameters to
the model must be balanced by the reduction they permit in
the ideal code length for the reconstruction error. A practical

MCBV formulation with code-length expression is further
given by [18], [26]

(17)

where the calculation of requires the estimation of
the true ML model parameter values. It is shown that, for
sufficiently large number of observations, the accuracy of the
ML estimation tends quickly to the best possible accuracy
determined by the Cram´er–Rao lower bounds (CRLB’s) [36].
Thus, the CRLB’s of the parameter estimates are used in
the actual calculation to represent the “conditional” bias and
variance [37]. We have found that, experimentally, the MCBV
formulation for determining the value of exhibits very
good performance consistent with both the AIC and the MDL
criteria. It should be noted, however, that it is not the only
plausible one; other criteria such as cross validation techniques
may also be useful in this case [46], [48], [50], [52], [53].

We present a simulation study to test the performance of
model selection with the proposed criterion (MCBV) and the
two frequently used methods, AIC and MDL. We generate
a test data with four overlapping normal components. Each
component represents one local cluster. The value for each
component is set to a constant value and normally distributed
noise is then added to this simulation phantom with a signal-
to-noise ratio (SNR) of 10 dB [38]. The phantom is shown in
Fig. 1(a). The AIC, MDL, and MCBV curves, as functions of
the number of local clusters are plotted in the same figure,
Fig. 1(b). According to the information theoretic criteria, the
minima of these curves indicate the correct number of the
image components. From this experimental figure, it is clear
that the number of local clusters suggested by these criteria are
all correct. More application of the MCBV to the identification
of real data structures will be presented in Section IV.

B. Probabilistic Self-Organizing Mixtures

There are many numerical techniques to perform the ML
estimation of finite mixture distributions [25]. The most popu-
lar method is the expectation-maximization (EM) algorithm
[44]. EM algorithm first calculates the posterior Bayesian
probabilities of the data through the observations and the
current parameter estimates -step) and then updates pa-
rameter estimates using generalized mean ergodic theorems

-step). The procedure cycles back and forth between these
two steps. The successive iterations increase the likelihood of
the model parameters. A neural network interpretation of this
procedure is given in [39]. However, EM algorithm has the
reputation of being slow, since it has a first order convergence
in which new information acquired in the expectation step is
not used immediately [40]. Recently, on-line versions of the
EM algorithm are proposed for large scale sequential learning.
Such a procedure obviates the need to store all the incoming
observations, changes the parameters immediately after each
data point allowing for high data rates. Titterington [25]
has developed a stochastic approximation procedure which is
closely related to our approach, and shows that the solution
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(a) (b)

(c) (d)

Fig. 1. Experimental results of model selection, algorithm initialization, and final quantification on the simulated image. (a) Original image with four
components. (b) Curves of the AIC/MDL/MCBV criteria where the minimum corresponds toK0 = 4. (c) Initial histogram learning by the ALMHQ
algorithm. (d) Final histogram learning by the PSOM algorithm.

can be made consistent. Other similar formulations are due to
Marroquin et al. [29] and Weinsteinet al. [41].

The PSOM we present here is a fully unsupervised and
incremental stochastic learning algorithm, and is a gener-
alized adaptive structure version of the SOFM algorithm
we presented in [21]. The scheme provides winner-takes-in
probability (Bayesian “soft”) splits of the data, hence allowing
the data to contribute simultaneously to multiple tissues. By
differentiating given in (4) with respect to the
unconstrained parameters, and we obtain the following

standard gradient descent learning rule for the mean and
variance parameter vectors:

(18)

(19)
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TABLE I
TRUE PARAMETER VALUES AND THE ESTIMATES FOR THE SIMULATED IMAGE OF FIG. 1

where is the learning rate and is the posterior Bayesian
probability, defined by

(20)

By adopting a stochastic gradient descent scheme for mini-
mizing [29], the corresponding on-line formulation
is obtained by simply dropping the summation in (18) and
(19) which results in

(21)

(22)

where the variance factors are incorporated into the learning
rates while the posterior Bayesian probabilities are kept, and

and are introduced as the learning rates, two se-
quences converging to zero, ensuring unbiased estimates after
convergence. This modified version of the parameter updates
is motivated by the principle that assigning different learning
rates to different parameters of a network and allowing those
to vary over time increases the rate of convergence [42].
Based on generalized mean ergodic theorem [26], updates
can also be obtained for the constrained regularization pa-
rameters, in the SFNM model. For simplicity, given an
asymptotically convergent sequence, the corresponding mean
ergodic theorem, i.e., the recursive version of the sample mean
calculation, should hold asymptotically. Thus, we define the
interim estimate of [43] by

(23)

Hence, the updates given by (21)–(23) provide the incremental
procedure for computing the SFNM component parameters.
Their practical use however requires strongly mixing condition
and a decaying annealing procedure (learning rate decay) [26],
[27], [36]. These two steps are currently controlled by user-
defined parameters which may not be optimized for a specific
problem. In addition, algorithm initialization must be chosen
carefully and appropriately. In [43], we introduce an adaptive
Lloyd–Max histogram quantization (ALMHQ) algorithm for
threshold selection which is also well suited to initialization
in ML estimation. In this work, we employ ALMHQ for
initializing the network parameters and

We tested the proposed technique using the same simulated
image shown in Fig. 1(a). After the algorithm initialization by
ALMHQ [43], network parameters are finalized by the PSOM
algorithm. The GRE value is used as an objective measure
to evaluate the accuracy of quantification. The results of the
distribution learning are shown in Fig. 1(c) and (d). The GRE
in the initial stage achieves a value of 0.0399 nats, and after

the final quantification by PSOM, is down to 0.008 nats. The
numerical results are given in Table I where the unit of
and simply represents the observed gray levels of the pixel
images while is the probability measure. To simplify the
representation, we omit their units as in [1], [5].

We also present a comparison of the performance of PSOM
with that of the EM [23], [40], [44] and the competitive
learning (CL) [29] algorithms in MR brain tissue quantification
(see Section IV). We evaluate the computational accuracy
and efficiency of the algorithm in standard finite normal
mixture (SFNM) distribution learning, based on an objective
criterion and its learning curve characteristics. For comparison,
we applied all methods to the same example and used the
GRE value between the image histogram and the estimated
SFNM distribution as the goodness criterion to evaluate the
quantification error. Fig. 2(a) shows learning curves of the
PSOM and competitive learning (CL) algorithms, averaged
over five independent runs. As observed in the figure, PSOM
outperforms CL learning by faster convergence and lower
quantification error, and reaches a final GRE value of about
0.04 nats. Fig. 2(b) presents the comparison of the perfor-
mance of the PSOM algorithm with that of the EM algorithm
for 25 epochs. As seen in the learning curves, PSOM algorithm
again shows superior estimation performance. Note that since
the EM algorithm uses intrinsically a batch learning mode, the
learning curve appears very smooth when each point on the
curve corresponds to a completed learning cycle in this case.
The final quantification error is about 0.02 nats for PSOM
with a faster convergence rate.

To conclude the discussion on PSOM, we address two
issues regarding the nature of PSOM as it relates to neural
computation. These are, the adjustment of structures in the
feature space by the algorithm and the temporal dynamics
of the learning process at the single neuron and the modular
levels. Mapping the self-organizing operation to the PSOM,
we design a network where both the structure and weights
are updated according to an unsupervised learning procedure.
Information theoretic criteria are shown to provide a rea-
sonable approach for the solution of the problem. Another
issue relating to the neural computational aspect of the PSOM
procedure is the temporal dynamics of the learning process.
As given by (21)–(23), learning in PSOM is a dynamic
feedback competitive learning procedure in a self-organizing
map (SOM) [27]. In particular, both the structure and the
weights of the PSOM “compete” for the assignment order of
each model and assignment probability of each observation.
Overall convergence dynamics of the PSOM are similar to
SOM in that a solution is obtained by “resonating” between
input data and an internal representation. Such a mechanism
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(a) (b)

Fig. 2. Comparison of the learning curves of PSOM and CL (left) and EM (right).

can be considered as a more realistic learning than the batch
EM procedure. In addition, temporal dynamics of the learning
process for PSOM on the structure level, suggest the adjust-
ment of the internal structure of a neural network as more
information is acquired, i.e., the addition of new clusters.

C. Probabilistic Constraint Relaxation Networks

Given the SFNM parameters, i.e., the image components
computed by the ML principle, there are several approaches
to perform pixel classification. When the true pixel labels
are considered to be functionally independent and nonrandom
constants, competitive learning approaches can be used for the
segmentation of different tissue types [6], [8]. ML classifica-
tion directly maximizes the individual likelihood function of
pixel images by placing pixel into the th region, if

(24)

where the term in parentheses is the modified Mahalanobis
distance. On the other hand, when pixel labels are considered
to be random variables, and the global context is taken
as the prior information, probabilistic neural networks are
most commonly used for tissue segmentation [4], [7]. By
minimizing the expected value of the total Bayes classification
error, pixel will be classified into the th region if

(25)

where the term in parentheses, since it incorporates the global
prior information is called the Bayesian distance.

The major problem with these approaches is that the classi-
fication error will be high when the observed images are noisy,
and possibly, there will be a high bias in the model param-
eters computed with sample averages after classification. We
propose a probabilistic constraint relaxation network (PCRN)
to perform tissue segmentation by imposing neighborhood
context regularities to alleviate the two problems mentioned
above. It operates on an initial segmented image, preferably

one with uniformly distributed classification errors, such as
the one segmented by the classification-maximization (CM)
algorithm [29]. PCRN uses stochastic discrete gradient descent
procedure where each pixel is randomly visited and its label is
updated [16], [45], i.e., pixel is classified into theth region if

(26)

where is defined in (2) and the decision follows a proba-
bilistic compatibility constraint given by

As discussed in Section II-C, by employing local maximiza-
tion, relaxation labeling searches for a consistent labeling such
that the average total consistency measure given by (10) is
maximized for the given support function (8) [2]. It has been
shown that relaxation labeling based on the stochastic discrete
gradient descent principle converges to a steady point such
that no label needs to be updated and the solution corresponds
to at least one local maximum of (10), [2], [16], [28],
[29]. Iterations are needed to search for a consistent labeling,
i.e., to maximize (10) for the given support function (8).
During this relaxation process, our numerical experiments
show that classification error decreases at every iteration and
converges to a local maximum. Although a complete consistent
labeling may not be reached in a practical implementation, the
relaxation labeling algorithm, can provide a quite reasonable
and accurate segmentation usually within few iterations [28].
The procedure can be summarized as follows.

PCRN Algorithm:Given

1) randomly visit each pixel for (by random
permutation of pixel ordering), and update its label
according to (26);

2) when the percentage of label changing less thatstop.
Otherwise, and repeat step 2.
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(a) (b)

Fig. 3. (a) PCRN structure. (b) Image segmentation by PCRN on simulated image (with initialization by ML classification).

As mentioned before, it is desirable to start with an initial
labeling which has classification errors that have spatial
uniform distribution on the initial segmented image. Our
experience has shown ML classification described by (24)
to be a very good candidate to perform the initialization,
i.e., to compute since it results in uniformly distributed
classification errors. Also, a reasonable stopping criterion,
suggested by our experimental results is 1%, i.e., choosing

in step 2.
As shown in Fig. 3(a), PCRN is composed of an di-

mensional input array (the pixel images), a dimensional
hidden layer, and an dimensional output array of pixel
labels, such that each takes a value where

The number of the hidden units corresponding
to the number of tissue types, is determined by information
theoretic criteria as explained in Section II-A during tissue
quantification. The estimates of the model parameters also
determine the parameters and for each of the units

Each of these hidden units combines the local
probabilistic constraint with the global intensity distribution
information to produce an output which competes with the
outputs of other hidden units to produce the labeling for the
th pixel, i.e., to determine the output The incorporation of

the local context information is achieved by a gating function
between the hidden units and the output, realizing given
in (2), providing feedback from the output units to determine

the activation of the hidden unit. Hence, the network, rather
than minimizing an energy function as in [6], [8], [29], looks
for a possible local maximum of a global consistency measure
by operating on local probabilistic constraints. It is derived
directly from probabilistic constraints and can be classified
as a recurrent noncausal competitive network with gating
functions that incorporate context constraints. This approach
demonstrates how a network of discrete units can be used
to search an optimal solution to a problem that benefits the
incorporation of context constraints.

Given the configuration of PCRN that is partially deter-
mined in model selection and estimation, the input layer of
the PCRN has neurons corresponding to each pixel image and
the output layer has neurons each corresponding to the labels
of the original image. Competition within hidden layer ensures
that only one neuron becomes active at any pixel location. This
is accomplished by a winner-takes-all scheme among neurons,
i.e., by a competitive learning procedure [29]. Gating between
output and the hidden layer incorporates the local labeling
information to provide locally consistent labeling and hence
to remove the ambiguities. This is performed by the use of
consistent measures between neighborhood neurons. Recipro-
cal feedback from output to gating unit allows each hidden
neuron to control its activation. Another important difference
between the PCRN and the conventional competitive learning
network is that the recurrent gating provides a mechanism to



1174 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 8, AUGUST 1998

Fig. 4. Test sequence of MR image brain scans (original images).

Fig. 5. Pure brain tissues extracted from original images.

incorporate the local Bayesian prior in the decision-making
process through a consistency constraint. Without a similar
mechanism, the conventional methods can only achieve, at
best, a ML or a global Bayesian classification.

For validation of image segmentation using PCRN, we apply
the algorithm first to the simulated images shown in Fig. 1(a).
We use ML classifier to initialize the image segmentation,
i.e., to initialize the quantified image by selecting the pixel
label with the largest likelihood at each node by (24). Our
experience suggested this to be a very suitable starting point
for relaxation labeling [16]. PCRN is then used to fine tune
the image segmentation. Since the true scene is known in
this experiment, the percentage of total classification error is
used as the criterion for evaluating the performance of the
segmentation technique. In Fig. 3(b), the initial segmentation
by the ML classification and the step-wise results of three
iterations in PCRN are presented. In this experiment, algorithm
initialization results in an average misclassification of 30%. It
can be clearly seen that a dramatic improvement is obtained
after several iterations of the PCRN by using local constraints
determined by the context information. Also, note that the
convergence is fast, as after the first iteration, most misclas-
sifications are removed. The final percentage of classification
errors for Fig. 3 is about 0.7935%.

IV. EXPERIMENTS AND RESULTS

In this section, we present results from real MR brain images
using the probabilistic neural network based approach we

introduced to quantify and segment tissue types. In Section III,
after introducing the algorithms, we presented results using a
simulated tone image for which the number and structure of
regions were known beforehand. The results presented showed
the success of the scheme in determining the correct number of
regions and the reliable definition of the boundaries of regions.
In this section, we concentrate on application of the method
to real MR images, which presents a great challenge to any
computerized unsupervised analysis technique because of its
complex structure. Furthermore, in addition to the assessment
of radiologists, we also introduce application of an objective
measure, GRE, to assess the performance of the scheme
after quantification and segmentation, i.e., the soft and hard
classification stages.

Fig. 4 shows the original data consisting of three adjacent,
T1-weighted images parallel to the AC-PC line. The data are
acquired with a GE Sigma 1.5 Tesla system. The imaging
parameters are TR 35, TE 5, flip angle 1.5 mm effective
slice thickness, 0 gap, 124 slices with in-plane 192256
matrix, and 24 cm field of view. Since the skull, scalp, and
fat in the original brain images do not contribute to the brain
tissue, we edit the MR images to exclude nonbrain structures
prior to tissue quantification and segmentation as explained
in [16]. This also helps us to achieve better quantification
and segmentation of brain tissues by delineation of other
tissue types that are not clinically significant [1], [2], [5].
The extracted brain tissues are shown in Fig. 5. For each
slice in the test sequence, the corresponding histograms are
given in Fig. 6. As seen in the figure, the histogram has a
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Fig. 6. Histograms of the brain tissue images.

considerably different characteristics from slice to slice and
the tissue types are all highly overlapping making the problem
quite complex. Our main objective is to assess the accuracy
and repeatability of the results obtained with the method
on real MR images. Evaluation of different image analysis
techniques is a particularly difficult task, and dependability of
evaluations by simple mathematical measures such as squared
error performance is questionable. Therefore, most of the time,
the quality assessment of the quantified and segmented image
usually depends heavily on the subjective and qualitative
judgements. As mentioned before, in this work, besides the
evaluation performed by radiologists, we use the GRE value
to reflect the quality of tissue quantification and also present
results using EM and CL for image quantification to compare

the results of our scheme in terms of both the accuracy
and the efficiency of the procedure. For assessment of tissue
segmentation, we use post-segmentation sample averages as
an indirect but objective criterion, and again use GRE values
and visual inspection.

Based on the pre-edited MR brain image, the procedure for
analysis of tissue types in a slice is summarized as follows.

1) For each value of (number of tissue types),
ML tissue quantification is performed

by the PSOM algorithm [(20)–(23)].
2) Scan the values of use MCBV

(16) to determine the suitable number of tissue types.
3) Select the result of tissue quantification corresponding

to the value of determined in step 2.
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Fig. 7. Results of model selection for slice 1–3 (K0 = 6; 8; 6; left to right).

TABLE II
RESULT OF PARAMETER ESTIMATION FOR SLICE 2

4) Initialize tissue segmentation by ML classification (23).
5) Finalize tissue segmentation by PCRN (by implementing

(25) as explained in Section III-C).

The performance of tissue quantification and segmentation
is then evaluated in terms of the GRE value, convergence rate,
computational complexity, and visual judgement.

As discussed in the literature, the brain is generally com-
posed of three principal tissue types, i.e., white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF), and their pair-
wise combinations, called the partial volume effect. Santago
and Gage [1] have proposed a six-tissue model representing the
primary tissue types and the mixture tissue types which were
defined as CSF-White (CW), CSF-Gray (CG), and Gray-White
(GW). In this work, we also consider the triple mixture tissue,
defined as CSF-White-Gray (CWG). More importantly, since
the MR image scans clearly show the distinctive intensities
at local brain areas, the functional areas within a tissue type
need to be considered. In particular, the caudate nucleus and
putamen are two important local brain functional areas. In our
experiment, as we have noted before, we allow the number
of tissue types to vary from slice to slice, i.e., consider
adaptability to different MR images. We let and

and calculate (11), (12),
and (15) for The results
with these three criteria are shown in Fig. 7, which suggest
that the brain images contain six, eight, and six tissue types,
respectively. According to the model fitting procedure using
information theoretic criteria as explained before, the minima
of these criteria indicate the most appropriate number of the
tissue types, which is also the number of hidden nodes in
the corresponding PSOM (mixture components in SFNM). In
the calculation of MCBV using (16), we used the CRLB’s to
represent the conditional variances of the parameter estimates,

given by [37]

(27)

and (28)

(29)

Note that since the true parameter values in above equations
are not available, their ML estimates are used to obtain the
approximate CRLB’s. From Fig. 7, it is clear that, with real
MR brain images, the overall performance of the three in-
formation theoretic criteria is fairly consistent. Our experience
suggests that, however, AIC tends to overestimate while MDL
tends to underestimate the number of tissue types [38], and
MCBV provides a solution between those of AIC and MDL,
which we believe to be more reasonable especially in terms
of providing a balance between the bias and variance of the
parameter estimates.

When performing the computation of the information theo-
retic criteria, we used PSOM to iteratively quantify different
tissue types for each fixed The PSOM algorithm is ini-
tialized by a fully automatic thresholding technique, i.e., the
adaptive ALMHQ procedure that we have introduced in [43].
For slice 2, the results of final tissue quantification with

are shown in Fig. 8. Table II gives the numerical
result of final tissue quantification for slice 2 corresponding to

where a GRE value of 0.02–0.04 nats is achieved. It
was found that most of the variance parameters are different,
which suggests that assuming same variance for each tissue
type with distinct image-intensity distribution is not very
realistic. These quantified tissue types agree with those of
physician’s qualitative analysis results [54], [55].

The PCRN tissue segmentation for slice 2 is performed
with and the algorithm is initialized by ML
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Fig. 8. Histogram learning for slice 2 (K = 7; 8; 9 from top to bottom).

TABLE III
COMPARISON OF SEGMENTATION ERROR RESULTING FROM

NONCONTEXTUAL AND CONTEXTUAL METHODS FORSLICE 2

classification [see (24)]. PCRN updates are terminated after
five to ten iterations, since further iterations produced almost
identical results. The segmentation results are shown in Fig. 9.
Although the segmentation result contains some small isolated
spots (less than four-pixel size), the PCRN approach is quite
encouraging. It is seen that the boundaries of WM, GM, and
CSF are delineated very well and successfully. To see the
benefit of using information theoretic criteria in determining
the number of tissue types, the decomposed tissue type seg-
ments are given in Fig. 10 with As can be observed
in Figs. 9 and 10, the segmentation with eight tissue types
provides a very meaningful result. The regions with different
gray levels are satisfactorily segmented, especially, the major
brain tissues are clearly identified. If the number of tissue
types were “underestimated” by one, tissue mixtures located
within putamen and caudate areas would be lumped into one
component, though the results are still meaningful. When the
number of tissue type was “overestimated” by one, there is
no significant difference in the quantification result, but white
matter has been divided into two components. For
the segmented regions represent eight types of brain tissues:
(a) CSF, (b) CG, (c) CGW, (d) GW, (e) GM, (f) putamen
area, (g) caudate area, and (h) WM as shown in Fig. 10.
These segmented tissue types also agree with the results of
radiologists’ evaluation [54], [55].

We then test the hypotheses that: i) tissue segmentation
using the prior constraint that the MR image has a locally
piecewise continuous structure provides better results than
those of using global regularization together with local in-
tensity values [called global Bayesian classification (GBC)];
and ii) tissue quantification usingsoft classification (i.e.,
without realizing the value of by ML quantification) is
more accurate than the quantification results obtained by using
sample averages computed afterhard pixel classification, (i.e.,
by a winner-takes-all scheme), or than those obtained in
conjunction with such a scheme. For this task, slice 2 is
segmented and postquantified, using the Bayesian approach
[i.e., global Bayesian classification based on (25)] and the
sample averages. The global Bayesian approach is not iter-
ative and does not require a stopping point. In this work,
the performance is evaluated by the post-GRE values for
all schemes, which is consistent with model-based ergodic
principle and allows for uniform comparison among various
techniques. Table III gives the classification errors by these
two methods in terms of postquantification errors. It can
be seen that quantification by PSOM results in lower error
than GBC and PCRN, with PCRN resulting in lower GRE
value. This result implies that the intrinsic misclassification in
tissue segmentation creates a biased parameter estimate that
contributes to the higher quantification error, as also noted in
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Fig. 9. Results of tissue segmentation for slice 2 withK0 = 7; 8; 9 (from left to right).

Fig. 10. Result of tissue type decomposition for slice 2 which represent eight types of brain tissues: CSF, CG, CGW, GW, GM, putamen area, caudate
area, and WM (left to right, top to bottom).

[23]. It is very interesting to note that, since ergodic theorem
is the most fundamental one behind any statistical model-
based image analysis approach, postquantification may be a
suitable objective criterion for evaluating the quality of image
segmentation in a fully unsupervised situation.

V. DISCUSSIONS ANDCONCLUSIONS

We have presented a complete procedure for quantifying
and segmenting major brain tissue types from MR images,

in which two kinds of probabilistic neural networks: soft
and hard classifiers, are employed. The MR brain image is
modeled by a standard finite normal mixture model and an
extended localized formulation. Information theoretic criteria
are applied to detect the number of tissue types thus allowing
the corresponding network to adapt its structure for the best
representation of the data. The PSOM algorithm is used to
quantify the parameters of tissue types leading to a ML
estimation. Segmentation of identified tissue components is
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then implemented by PCRN through Bayesian decision. The
results obtained by using the simulated image and real MR
brain images demonstrate the promise and effectiveness of the
proposed technique. In particular, the number of tissue types
and the associated parameters were consistently estimated. The
tissue types were satisfactorily segmented. Although the cur-
rent algorithms were tested for 2-D images, their application to
3-D situations is straightforward by appropriate neighborhood
function in PCRN.

Our main contribution is the complete proposal of a three-
step learning strategy for determination of both the modular
structure and the components of the network. In this approach,
the network structure (in terms of suitability of the statistical
model) is justified in the first step. It is followed by soft
segmentation of data such that each data point supports all
local components simultaneously. The associated probabilistic
labels are then realized in the third step by competitive learning
of this induced hard classification task.

We introduced a model selection scheme that explicitly
incorporates the bias and variance dilemma in finite data
training. When tested with synthetic and actual data, the results
show that the number of hidden nodes in PSOM should be
adjusted to match the data, and hence order selection may be
important to consider. Theory is developed showing that ML
quantification and Bayesian classification have distinct objec-
tives, and both soft and hard classification problems are studied
which describe performance differences. The quantification
results from the presegmentation and the postsegmentation
stages generated the evidence. However, the results of tissue
segmentation that includes probabilistic constraints, indicate
that the use of local context information can provide better
results that is often consistent with the recurrent network
structure.

The main limitations of the current approach are that i) it
requires the testing of all possible network structure candidates
during the model fitting procedure, hence is not efficient
especially for processing MR sequence images where an on-
line learning might be preferred, and ii) applications to real
MR data indicates the possibility of being trapped in a local
maximum in ML estimation by the PSOM since there is no
guarantee of attaining the global maximum.

There are possible ways to mitigate these problems: Since
one possible contribution to the local minima problem is
imperfect initialization, we use a simple automated thresh-
old selection, based on Lloyd–Max histogram quantization
[43], to systematically initialize the algorithm during model
selection and quantification. Experimental results suggested
that the method is quite effective in a variety of situations
with different data structures [16], [21], [43]. To address
the first limitation mentioned above, we tested an adaptive
model selection procedure by incorporating the correlation
between slices in a given MR sequence. More precisely, model
selection starts from a slice in the middle of the sequence and
moves in each direction, such that for slice we set

and where is the optimal
number of tissue types for slicegiven by the information
theoretic criteria. It should be addressed, however, that they
are by no means the only, or the best, possible solutions; in

fact, it will be interesting to compare the effect of random and
systematic algorithm initialization on the final performance,
and further study is needed for interpretation of the results of
these information theoretic criteria: AIC, MDL, and MCBV.

To summarize, the results of the experiments we have
performed indicate the plausibility of our approach for brain
tissue analysis from MRI scans, and show that it can be
applied to clinical problems such as those encountered in tissue
segmentation and quantitative diagnosis.
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