
Improved training methods: 02457 Non-Linear Signal Pro-
cessing, Exercise 6

This exercise is based om C. M. Bishop:Neural Networks for Pattern Recognitionchapter 7.
The objective of this exercise is to become familiar with optimization methods for nonlinear
neural network models. The exercise will focus on the pseudo(-Gauss)-Newton method and the
conjugate gradient algorithms.

Print and comment on the figures produced by the software as outlined below at theCheck-
points.

You are going to use the “Neural Regression” Matlab toolbox programmed at Digital Signal
Processing section IMM DTU. The main Matlab function for training a two-layer feed-forward
neural network with conjugate gradient and pseudo-Gauss-Newton is callednr_trainx .

Optimization procedures

There is a host of algorithms for non-linear system optimization. Unfortunately this reflects
the application specific nature of the problem, no algorithm is uniformly superior. A subset of
important algorithms is shown in table 1.

1st 2nd Name
− − Amoebe / simplex / Nelder-Mead
+ − Gradient descent
+ − Gradient descent with momentum
+ − Natural gradient
+ − Conjugate gradient algorithm

— Hestenes-Stiefel
— Fletcher-Reeves
— Polak-Ribiere
— Scaled conjugate gradient

+ − Quasi-Newton
— Davidson-Fletcher-Powell (DFP)
— Rank-one-formula
— Broyden-Fletcher-Goldfarb-Shanno (BFGS)

+ (+) Pseudo(-Gauss)-Newton
+ (+) Gauss-Newton
+ + Levenberg-Marquardt
+ + Newton(-Ralphson)

Table 1: Some optimization algorithms.

Most of the algorithms in table 1 use an iterative scheme where the parametersw are ini-
tialized to some values and then a step is taken to a new place

w(τ+1) = w(τ) + ∆w(τ) (1)

The usualgradient descent(from the last exercise) is the negative gradient multiplied with a

1



suitable learning rateη:

∆w = −η
∂E(w)

∂w
(2)

One can develop the second order algorithms (Newton, Levenberg-Marquardt, Gauss-Newton,
pseudo-Gauss-Newton) from a Taylor expansion up the second order term of the costfunction
E aroundŵ :

E(w) = E(ŵ) + (w − ŵ)′gŵ +
1

2
(w − ŵ)′Hŵ(w − ŵ) + . . . (3)

gŵ is the first order derivative / gradient of the cost function inŵ andHŵ is the second order
derivative — the Hessian — of the costfunction inŵ. The first order derivative of inw is:

∇E(w) = gŵ + Hŵ(w − ŵ) (4)

We want to find a local minimumw = w0. The gradient should be zero there:∇E(w0) = 0,
which means that we now can isolatew0:

w0 = ŵ + (−H−1
ŵ gŵ) (5)

Taking this step is the (full) Newton algorithm. The other second order methods (and the quasi-
Newton methods) use some kind of approximation to the Hessian, e.g., thepseudo-Gauss-
Newtonuses only the diagonal of the Hessian (here for each variablewi in w):

∆wi = − ∂E

∂wi

/
∂2E

∂w2
i

(6)

Conjugate gradient algorithmsconstruct a series ofconjugatedirectionsd. These are di-
rection that satisfy the following condition:

d′j+1Hdj = 0 (7)

There are three classic conjugate gradient algorithms, Hestenes-Stiefel, Fletcher-Reeves and
Polak-Ribiere, which construct the series of conjugate directions using the following equations
(g is the gradient):

dj+1 = −gj+1 +
g′j+1(gj+1 − gj)

dj
′(gj+1 − gj)

dj (8)

dj+1 = −gj+1 +
g′j+1gj+1

g′jgj

dj (9)

dj+1 = −gj+1 +
g′j+1(gj+1 − gj)

gj
′gj

dj (10)

The conjugate gradient algorithms usually require that the costfunction is minimized along
the direction, thus aline searchis performed.

2



Optimization in the neural regression toolbox

The neural regression toolbox implements five different optimization algorithms presently: Gra-
dient descent, pseudo-Gauss-Newton and three conjugate gradient algorithms: Hestenes-Stiefel
(HS), Fletcher-Reeves (FR) and Polak-Ribiere (PR). The functionnr_trainx implements
them all andnr_train only implements the two first. The gradient descent algorithm chooses
the (negated) gradient as its direction and the step size (Bishop: learning rateη) is determined
by line search using a sort of bisection: The gradient decent starts with a step that is as long
a gradient (i.e.,η = 1) and then halves it until if the costfunction is decreasing. The pseudo-
Gauss-Newton starts with a length determined by equation 6. The line search for both of these
algorithms is implemented innr_linesear . The pseudo-Gauss-Newton presently starts with
10 gradient descent step so that it (hopefully!) will get into a region where the second order
derivative is well-behaved.

The conjugate gradient algorithms use another type of line search algorithm: quadratic
(parabolic) and cubic interpolation and extrapolation (Bishop, pp 273-274). The line search
is inexact and the stop criterion for it is the so-called Wolfe-Powell condition.

This kind of line search is imlemented withnr_linesearch (not the same asnr_linesear !).
The neural network is run on the sunspot data. There are 12 inputs plus a bias unit, 3 hidden

units and one output.

Checkpoint 6.1:

Use the functionmain6a.m to plot the surface of the costfunction as a function of two of
the largest weights. The plot also contains three trace from optimization: Two with gradient
descent (without line search) distinguished by a small and a large step size and one pseudo-
Gauss-Newton. Which one is which?

Checkpoint 6.2:

Make a flow chart and describe the calculations and functions in the neural net programmain6b.m .
Plot the evolution of the training error and the gradient norms for the gradient descent using
main6b.m , for 3 and 8 hidden units. Describe the evolution of the gradient norm curve: Are
there relations between “events” in the training error curve and in the gradient norm curve?

Checkpoint 6.3:

Use the programmain6c.m to investigate the speed of convergence for the different algo-
rithms. The program runs the algorithms a couple of times (each with a different seed for the
initialization of the weights) and computes the average of the costfunction value. The evolution
of the costfunctions is available in the variableE Determine which is the best algorithm and
comment on the shape of curves.

DTU, 1999, 2003, Finn Årup Nielsen and Lars Kai Hansen.

3


