
COURSE 02457

Non-Linear Signal Processing: Exercise 4

This exercise is based on C.M. Bishop: Neural Networks for Pattern Recognition, chapter 9.
The objective of the exercise is to use the MATLAB software to illustrate and discuss the
concept of generalization for linear models.

Print and comment on the figures produced by the software main4a.m to main4c.m as out-
lined below at the three Checkpoints.

Linear Models

Let the function y(x) be a function of the vector x, where x = (x1, . . . , xd)
>. The functional

form of y(x) is unknown, but we have a data-set, D = {(xn, tn)}, n = 1, . . . , N of N corre-
sponding values of input (x) and output t, and we wish to find a model of the function using
the information in the data.

Let us model the function y(x) with a linear model given by

y(x) = w0 +
d∑

i=1

wixi = w0 + w>x, (1)

where w is a weight vector.
The term w0 in equation (1) can be included in the weight vector, w, where another term

is also added to x, such that x = (1, x1, . . . , xd)
>. This reduces equation (1) to

y(x) =
d∑

i=0

wixi = w>x. (2)

The weight-vector, w, that models the given data-set (training-set) best is found through
minimizing an error function. Here we shall use the sum-of-squares error function augmented
by a weight-decay term

E(w) =
1

2

N∑
n=1

{y(xn;w)− tn}2 +
1

2
αw2 (3)

=
1

2

N∑
n=1

{
w>xn − tn

}2
+

1

2
αw2. (4)

The weight decay α is a control parameter. Introducing the matrix, X, where X> = (x1 x2 . . .xN)
and the vector, t = (t1, t2, . . . , tN)>, equation (4) can be rewritten as

E(w) =
1

2

(
w>X>Xw + t>t− 2w>X>t

)
+

1

2
αw2. (5)

Since equation (5) is quadratic in w, the exact value of w minimizing E(w) can be found
analytically by equating the derivative of equation (5) to zero. This gives the normal equations
for the least-squares problem: (

X>X + α1
)
w = X>t. (6)
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Where 1 is a unit matrix. Solving for w gives the optimal w. Since X is an N × (d+1) matrix,
X>X is a (d + 1)× (d + 1) square matrix. Thus the solution to equation (6) is given by

w =
(
X>X + α1

)−1
X>t. (7)

The generalization error is defined as the expectation

EG(w) =
1

2

∫ ∫
{y(x;w)− t}2 p(t|x)p(x)dtdx (8)

≈ 1

2M

M∑
m=1

{
w>xm − tm

}2
. (9)

approximated by the mean value over a large test set consisting of M examples drawn indepen-
dently from the N examples in the training set.

Checkpoint 4.1:

Use the program main4a.m to create a training-set with a 2-dimensional input variable and
a 1-dimensional output variable. Evaluate the training and test errors on independent sets
generated by the same true weight vector and the same noise variance, for a model with one
and two input variables respectively. In this checkpoint the weight decay is set to zero. Compare
the training and test errors per example as function of the size of the training set. Compare the
value of the training and test errors for large training sets with the value of the noise variance.

Time Series Prediction

An example where the linear model can be used is in time series prediction. To illustrate this,
consider the example of the sunspot measurements. The number of sunspots oscillates almost
periodically over a period of some years. The average number of sunspots has been measured
yearly since 1700. Imagine we want to predict the average number of sunspots next year. The
linear model can be used for this.

Let the number of sunspots in year n be xn. Let’s assume that the number of sunspots in
year n only depends on the number of sunspots in the previous d years. This is reasonable
since the there must be a limit as to how far back one can expect a correlation. This can be
expressed as

xn = f(xn−1, xn−2, . . . xn−d). (10)

Approximating the function f with a linear model gives

xn = w0 +
d∑

j=1

wjxn−j. (11)

This corresponds to equation (1), and hence is the same problem given by equations (2) to (7),
where the training set is given by

xn = (1, xn−d, . . . , xn−1)
>

tn = xn

}
n = 1, . . . , N − d− 1. (12)
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The weights can be found using equation (7), and the predicted value, xn+1, can be found from

xn+1 = y(xn) = w>xn. (13)

In the context of sunspot time series prediction, the data set from 1700-1920 is used for training
while the data from 1921-1979 is used to test performance.

Checkpoint 4.2:

Use the program main4b.m to perform a time series prediction of the number of sunspots with
the data from 1700-1920 as training set. Evaluate the test error on the set 1921-1979. Normalize
the test error per example by the total variance of the sunspot series. Study the test error as
function of the number of weights, d, (hence years) included in the model. Which value of d
do you recommend?

Bias-variance trade-off

The training set averages generalization error in the point x can be rewritten,

ED
[
(y(x;w(D))− < t|x >)2] = ED

[{y(x)− ED[y(x)]}2
]

+ {ED[y(x)]− < t|x >}2.

Hence the average error is split into a variance part, quantifying the variation among solutions
for different training sets and a bias part quantifying the performance of the average model
with respect to best possible model < t|x > (the conditional mean of the output given the
input).

Checkpoint 4.3:

Use the program main4c.m to measure the relative amount of variance and bias for a linear
model as in checkpoint 4.1 with two inputs and controlled by weight decay. Plot the average
generalization error, the bias error, and the variance error for a large range of weight decay
values. Comment on the two regimes where the generalization error stems from variance and
bias respectively. What is the role of the weight decay in these two regimes. Which weight
decay value would you recommend?

Challenge:

Modify the program main4b.m to predict the number from subsets of the training set, resample
many different subsets to produce different training sets of a given size. Compute the bias-
variance trade-off as function of weight decay as in checkpoint 4.3.

DTU, September 1999,

Lars Kai Hansen and Karam Sidaros
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