
02457 Non-Linear Signal Processing,

Mini project in speech processing (Part II of III)

This exercise is based on L.R. Rabiner A tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE 77, 257-286, (1989).

Print and comment on the figures produced by the software as outlined below at the
Checkpoints, this exercise is split in three parts, hence, performed over three Thursday
sessions.

Training the sequence model

First, let us define the elements of a discrete observation HMM,M = {S, π(1),A,B, {yk, 1 ≤
k ≤ K}}, characterized by the state equation and observation equation, i.e.,

π(t) = Aπ(t− 1), π(t) = [P (xt = 1), · · · , P (xt = S)]T

p(t) = Bπ(t), p(t) = [P (yt = 1), · · · , P (yt = K)]T

Here, S is the number of states in the model, xt is the state random process, π(t) is
the state probability vector at time t, and A is the S-by-S state transition matrix with
elements aij = a(i|j) = P (xt = i|xt−1 = j) (note: transpose of Rabiners definition!). In
the observation equation, K is the number of distinct observation symbols per state (the
number of vectors yk in the VQ codebook), yt is the observation random process, p(t) is
the observation probability vector at time t, and B is the K-by-S observation probability
matrix with elements bki = b(k|i) = P (yt = k|xt = i).

Hence an HMM requires specification of the two model parameters, S and K, and
specification of the three probability measures A, B, and π(1). Thus, the training problem
is to adjust the model parameters to maximize the likelihood P (y|M), i.e., the probability
of the observation sequence y = {y1, y2, . . . , yT}, given the model.

Let I = {i1, i2, . . . , iT} denote a specific state sequence, then the likelihood P (y|M)
can be found as

P (y|M) =
∑
I

P (y, I|M) =
∑
I

P (y|I,M)P (I|M)

=
∑
I

b(y1|i1)b(y2|i2) · · · b(yT |iT )× P (x1 = i1)a(i2|i1)a(i3|i2) · · · a(iT |iT−1)

In practice, computation of P (y|M) is based on the following forward/backward recur-
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sions,

α(yt
1, i) =

S∑
j=1

α(yt−1
1 , j)a(i|j)b(yt|i), α(y1

1, i) = P (x1 = i)b(y1|i)

β(yT
t+1|i) =

S∑
j=1

β(yT
t+2|j)a(j|i)b(yt+1|j), β(yT

T+1|i) = 1

where α(yt
1, i) is the joint probability of having generated the partial forward sequence yt

1

and having arrived at state i at the t’th step. Similarly, β(yT
t+1|i) denote the probability

of generating the backward partial sequence yT
t+1, given that the state sequence emerges

from state i at time t. To avoid numerical problems (underflow) in the computations of
the forward/backward recursions, we must scale α(·, ·) and β(·|·) in each step with ct as
follows

α̂(yt
1, i) = ctα̃(yt

1, i), α̃(yt
1, i) =

S∑
j=1

α̂(yt−1
1 , j)a(i|j)b(yt|i), ct =

(
S∑

i=1

α̃(yt
1, i)

)−1

β̂(yT
t+1|i) = ctβ̃(yT

t+1|i), β̃(yT
t+1|i) =

S∑
j=1

β̂(yT
t+2|j)a(j|i)b(yt+1|j)

Based on the scaled forward/backward recursions, an iterative estimation procedure
for computing a Hidden Markov Model, M, corresponding to a local maximum of the
likelihood P (y|M), can be devised. This algorithm, known as F-B reestimation, takes a
model M = {S, π(1),A,B, {yk, 1 ≤ k ≤ K}} and the training observation, y = yT

1 , to
compute a new model M̄ = {S, π̄(1), Ā, B̄, {yk, 1 ≤ k ≤ K}} as

ā(j|i) =

∑T−1
t=1 α̂(yt

1, i)a(j|i)b(yt+1|j)β̂(yT
t+2|j)∑T−1

t=1 α̂(yt
1, i)β̂(yT

t+1|i)/ct

b̄(k|j) =

∑T
yt=k,t=1 α̂(yt

1, j)β̂(yT
t+1|j)/ct∑T

t=1 α̂(yt
1, j)β̂(yT

t+1|j)/ct

π̄i(1) = P (x1 = i) =
α̂(y1

1, i)β̂(yT
2 |i)

c1

If the likelihood has increased such that P (y|M̄) − P (y|M) ≥ ε, where ε is a given
tolerance, then reestimate the model with M = M̄. The required likelihood can be
obtained from any time slot in the lattice, i.e.,

P (y|M) =
S∑

i=1

α(yt
1, i)β(yT

t+1|i) =
S∑

i=1

α(yT
1 , i) =

(
T∏

τ=1

cτ

)−1
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Again, to avoid numerical problems (P (y|M) is small), the log-likelihood measure is used
instead as given by

log P (y|M) = −
T∑

τ=1

log cτ

The last thing to consider is the training of an HMM with L multiple observation sequences
(different occurrences of the same word). Let y(l) denote the lth observation of length
Tl, and let superscript l indicate results for this sequence, then the F-B reestimation
algorithm must be modified as

ā(j|i) =

∑L
l=1

∑Tl−1
t=1 α̂(l)(yt

1, i)a(j|i)b(yt+1|j)β̂(l)(yTl
t+2|j)∑L

l=1

∑Tl−1
t=1 α̂(l)(yt

1, i)β̂
(l)(yTl

t+1|i)/c(l)
t

b̄(k|j) =

∑L
l=1

∑Tl

yt=k,t=1 α̂(l)(yt
1, j)β̂

(l)(yTl
t+1|j)/c(l)

t∑L
l=1

1
P (y(l)|M)

∑Tl

t=1 α̂(l)(yt
1, j)β̂

(l)(yTl
t+1|j)/c(l)

t

π̄i(1) = P (x1 = i) =
1

L

L∑

l=1

α̂(l)(y1
1, i)β̂

(l)(yT
2 |i)

c
(l)
1

Checkpoint 10.3

Inspect the update rules for HMM training. Show that they are multiplicative in Ā, i.e.,
that the updated value is proportional to the ‘old’ value. This means that if an entry in
transition matrix is initialized to value zero it will remain zero after the update.

We consider a simulation based on a given HMM ‘teacher’, a model with a specific
set of parameters as set up in the matlab script main10c.m. Create a flow chart of the
operation of the script. What type of sequences are expected from the teacher HMM?.

We want to generate bias-variance trade off curves, i.e. training and test log-likelihoods
as a function of the nunmber of hidden states in the student HMM. Explain why the
likelihood on a test set can be used to evaluate the student. This experiment will reveal
if we can ‘over-train’ the HMM if too many states are used. How many parameters are
estimated in the HMM for a given number of hidden states. Explain the bias-variance
trade off for these models. Can the transition matrices and emission probabilities be
directly compared? (Hint: permutation symmetry of the hidden state index).

How many states and emissions are present in the teacher HMM? Is the EM algorithm
trained HMM reproducible, i.e., consistent in determining the number of states? Which
model has the highest value of the likelihood among the trained models with different no.
of states? The EM algorithm is run five times to get an ensemble average of the suggested
no. of states. What is the overall typical number of states to recommend?
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Try to stop the matlab script and investigate the estimated transition matrix, when the
no. of states is 8 (insert a break point). Usually to many free parameters—here states—
result in overtraining. This is not the case here. Why is the model not overtrained? See
figure 1 - Hint: States and their emission probabilities can be cloned.

Checkpoint 10.4

We will now investigate the convergence of the EM algorithm. We will start the EM
algorithm with the optimal parameters, i.e. the teacher’s parameters, to see whether the
solution stays close to the teacher or not. The matlab script file main10d.m will run
with two different initial conditions: the teacher and random initialization. Compare the
likelihood of the two different initializations. Try to run several times and change the
number of training samples nS. Comment on what you observe, e.g., interpret the trained
HMM. What type of sequences do they produce?

Peter S. K. Hansen and Lars Kai Hansen, November 2001, November 2005.
Rasmus Elsborg Madsen and Ole Winther, November 2003.
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