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1 Introduction

This note is made as an gentle introduction to Markov Models and Hidden Markov
Models, and should in combination with ref. [1] give a good overview of the principles
of Hidden Markov Models. Inspiration have been found in ref. [4] and ref. [1], both
describing the theory of Markov and Hidden Markov Models. To read this note basic
statistical skills is an advantage. Especially Bayes formula should be known.
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2 Markov Models

Until now in the course we have been assuming that data is independent and identi-
cally distributed (iid.). This means that given a sequence of dataD = {x1,x2,x3 ...,xN},
sampled from the random variable X , the likelihood can be written as the product
of the individual samples

p(D|M) =
N∏

n=1

p(xn). (1)

When working with sequential data (correlation among subsequent samples) the iid.
assumption may no longer be a good approximation. Many signals of interests are
sequential in nature, eg. audio (speech, music) and video-recordings etc. In both
cases it is obvious that there is a time correlation between the di�erent samples.

Instead of assuming independence, we could assume a causal dependence among the
given samples.

p(D|M) = p(xN ,xN−1, ..,x2,x1)
= p(xN |xN−1, ..,x2,x1)p(xN−1|xN−2..,x2,x1)....p(x2|x1)p(x1) (2)

= p(x1)
N∏

n=2

p(xn|x1:n−1). (3)

This would be a computational hard problem as one would need a big amount of real-
izations to �nd the parameters of this distribution. To simplify the above calculation
a Markov Assumption is applied

p(xn|xn−1, ...,x2,x1) ≈ p(xn|xn−1). (4)

This approximation is called the �rst order Markov assumption because the outcome
of xn is only dependent on the outcome at xn−1. The assumption means that eq.
(2) can be written as a product of conditions on the previous sample

p(D|M) = p(x1)
N∏

n=2

p(xn|xn−1). (5)

When working with Markov Models the observed variable X are in some cases1
discretized using eg. a quantizer, such that the observation sequence x1,x2, ..,xN

can be described using a scalar discrete observation sequence {x1, x2, .., xN} where
1The Kalman Filter is considering continuous state space instead of discrete state space.
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each of the variables xn may take one of M states {S1, S2, .., SM} (one of M di�erent
quantization levels). The likelihood of the discretized samples D = {x1, x2, .., xN}
can now be calculated as

p(D|M) = p(x1 = Si)
N∏

n=2

p(xn = Sj |xn−1 = Si). (6)

The conditional probabilities p(xn = Sj |xn−1 = Si) are referred to as state transition
probabilities or simply transition probabilities. The transition probabilities describes
the probability of being in state Sj at time n + 1 given that we where in state Si at
time n :

ai,j = p(xn = Sj |xn−1 = Si). (7)

In most cases we assume that the transition probabilities are homogeneous, which
means that the probabilities do not change over time, so

p(xn = Sj |xn−1 = Si) = p(xn+T = Sj |xn−1+T = Si). (8)

where T is a positive integer larger or equal to one.

The transition probabilities can be written as a transition matrix, which is of dimen-
sion M ×M (M = 3 in the example below )

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 . (9)

Since each element in the matrix represent a probability of staying or jumping to
another state then

• Each entry must be positive, so ai,j ≥ 0 for all i, j

• Each row must sum up to one, since each row represents the probability of
jumping from or staying in the state. Hence

∑M
j=1 ai,j = 1 for i = 1..M

The state and transition probabilities can be shown graphically, see �gure 1 page 4
showing a three state model, where the transition probabilities is applied.

There is no time information in this illustration. To include the time information
another representation is needed, see �gure 2 page 4. This way of representation is
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Figure 1: Illustration of the Markov Model
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Figure 2: Graphical model of Markov Model

called a graphical model. Here each node represents the observed state variable xn,
and the transition matrix is shown between each time-step.

To fully characterize the Markov Model, we need to address the initial state proba-
bility which is given as πi(1) = p(x1 = Si). This may also be written as a vector :
πππ(1) = [p(x1 = S1) p(x1 = S2) . . p(x1 = SM )]T . This probability de�nes the
probability of being in one of the M states at the �rst sample.

We now have enough knowledge to present the �rst example : the weather example.

2.1 Weather Example

Lets assume that we observe only three di�erent kinds of weather, namely sunny,
rainy or foggy weather. We will now use a Markov Model to model the weather. The
Markov Model can be build using three states which is given by {S1 = sunny, S2 =
rainy, S3 = foggy}. The stochastic variable X is a discrete random variable (a scalar)
taking one of these three values. A nice old man with big white beard, has provided
us with the transition matrix, see table 1 page 5, which can be illustrated as shown
in �gure 3 page 5.

Having de�ned the transition matrix, we can now answer questions like : Given that
today is sunny, what's the probability that tomorrow is sunny and the day after is
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Tomorrow's weather
Sunny (S1) Rainy (S2) Foggy (S3)

Sunny (S1) 0.8 0.05 0.15
Today's weather Rainy (S2) 0.2 0.6 0.2

Foggy (S3) 0.2 0.3 0.5

Table 1: Transition probabilities

Figure 3: States and Transition probabilities of the weather Markov Model

rainy ?

So basically we want to determine the probability : p(x2 = Sunny, x3 = Rainy|x1 =
Sunny) = p(x2 = S1, x3 = S2|x1 = S1)

p(x2 = S1, x3 = S2|x1 = S1) = p(x3 = S2|x2 = S1, x1 = S1)p(x2 = S1|x1 = S1) (10)
= p(x3 = S2|x2 = S1)p(x2 = S1|x1 = S1) (11)
= 0.05 · 0.8
= 0.04.

The Markov property was applied in eq. (10) to get to eq. (11).

Another question which might be relevant to ask is : Given that today is foggy, what's
the probability that it will be rainy two days from now ?

Expressed using probabilities this looks like

p(x3 = rainy|x1 = foggy) =
∑
x2

p(x3 = rainy, x2|x1 = foggy).
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We here marginalize day 2 since there are three ways to get to rainy. The three
paths are {foggy,sunny,rainy}, {foggy,rainy,rainy} and {foggy,foggy,rainy}. Using
the Markov property the sum can be written as

p(x3 = S2|x1 = S3) =
∑

x2={S1,S2,S3}
p(x3 = S2|x2)p(x2|x1 = S3)

= 0.3 · 0.5 + 0.6 · 0.3 + 0.05 · 0.2
= 0.34. (12)

In the above two examples the start state is given, namely as sunny in the �rst
example and foggy in the second example.

2.2 Finding parameters of the model

As seen from this simple weather example, a nice old man with white beard provided
us with the correct transition matrix, but what should we do when we are not
provided with the correct matrix ? Our model is described by the parameters M =
{A,πππ}, where πππ is the initial state probability. Given we have observed a sequence
(training set) D = {x1, x2, .., xN} the log-likelihood can be maximized with respect
to the initial state probabilities and transition probabilities

argMlogp(D|M) = argM log

[
p(x1)

N∏

n=1

p(xn|xn−1)

]
(13)

= argM log[p(x1)] +
N∑

n=1

log[p(xn|xn−1)]. (14)

This maximization can be carried out by taking derivatives of the log-likelihood with
respect to the transition probabilities as well as the initial state probability. Though
the problem of maximizing the log-likelihood is not an unconstrained maximization
problem, since the both the transition probability as well as the initial state prob-
abilities have to be positive and sum to one. To overcome this problem Lagrange
multipliers or a re-parametrization like softmax (see, eg. [2]) can be used.

2.3 Summary

A small introduction have been given to Markov Models. At this stage, you should
know what a Markov Model is. You have been introduced to the following important
subjects which characterize a Markov Model :
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• identi�ed the di�erence between independent data and sequential data

• been introduced to a �rst order Markov Model

• been introduced to states in a Markov Model as well as transition probabilities
(transition matrix)

• been introduced to a simple example of a Markov Model where the transition
matrix has been given.

2.4 Questions

Describe in words what is meant with sequential data ?

How can you verify that a transition matrix is valid ?

Using the �rst order Markov assumption would the probability p(xn|x1:n−1) be in�u-
enced by a change in the outcome of xn−3?
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3 Hidden Markov Models (HMM)

Now, lets assume that the states {S1, S2, ..., SM} which have been observed through
the variable X earlier is no longer observable but are now hidden variables. The
hidden variables are observed through another variable Y, which gives an indication
of the hidden state. In this discussion we will again concentrate on �rst order Markov
Models. Before continuing we will give an example on how to interpret hidden and
observed variables.

Assume the following scenario. You are observing dice throws at a casino.
The person throwing the dice can either use a dice (De) with equal prob-
abilities or a dice ( Due) with unequal probabilities. You as the observer,
only see the outcome of the di�erent throws without knowledge of which
dice was used. In this scenario the outcomes of the di�erent throws are
the observed variable and the dice used (either De or Due) is the hidden
variable. So an observation sequence could perhaps look like

Y = {453346334454532}.

And the problem could be to determine the most likely sequence of hidden
states.

The �rst order Markov property now applies to the hidden states so, given the state
of xn−1 = Si the current state xn = Sj is independent of all the states prior to n−1.
This means that the transition probabilities (transition matrix) is de�ned as follows
for a �rst order Hidden Markov Model

p(xn = Sj |xn−1 = Si) = ai,j . (15)

The observed variable Y can be a discrete or continuous random variable. Assume
that the observable's are discrete taking on one of L values {C1, C2, .., CL}, we can
relate the observable's and hidden state variables, using the conditional probability:

p(yn = Ci|xn = Sj) = bi,j (16)

which means that given we are in state Sj of the hidden variable at some time instant
n, what is the probability of observing the symbol Ci. The output (observables)
also satisfy the Markov property with respect to the states: given xn the observed
output variable yn is independent of the states and observations at all other time
instants. From eq. (16), it should be easy to convince yourself that the output model
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(also called emission probability) can be fully described by a L × M observation
(or emission) matrix B. In most cases we assume that the observation matrix is
homogeneous, namely that it do not change over time.

As to recap, the di�erence between an ordinary Markov Model, and a Hidden Markov
Model is that the states is observed directly in the Markov Model, and observed
indirectly with a uncertainty in the Hidden Markov Model.

The above is best illustrated using the graphical model representation, see �gure 4
page 9 where the hidden variables are hatched2.
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Figure 4: Graphical model of a Hidden Markov Model

In the Markov Model we could write out the complete likelihood, since all the vari-
ables have been observed. To describe the likelihood of the Hidden Markov Model,
we have to remove all uncertainty on the hidden states X , which is done by infer-
ence (summing out the underlying states). To calculate the likelihood of the set of
observations D = {y1, y2, .., yN} using the above rules gives

p(D) =
∑

x1,x2,..,xN

p(x1)p(y1|x1)
N∏

n=2

p(xn|xn−1)p(yn|xn). (17)

The above expression can also be written using the notation of transition matrix,
observation matrix and initial state probability

p(D) =
∑

x1,x2,..,xN

πx1(1)bx1(y1)
N∏

n=2

axn−1,xnbxn(yn) (18)

where bxn=Sj (yn = Ci) = bj,i is the emission probability (the probability of emitting
symbol Ci given we are in state Sj .

From eq. (18) we see that we are performing N-sums, where each sum is over the
number of states M . If one just performed the sums without using the Markov

2The graphical model of a Kalman �lter is identical with the graphical model of a hidden Markov
Model.
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Probability of umbrella given the weather
sunny, bxn=sunny(yn = C1) 0.1
rainy, bxn=rainy(yn = C1) 0.8
foggy, bxn=foggy(yn = C1) 0.3

Table 2: Probability of person bringing an umbrella given the weather

properties, it would require around O(MN ) operations, which even in the simple
case of M = 10 and N = 100 would require around 10100 operations. After a
continuation of the weather example we will introduce algorithms to reduce the
number of operations to calculate eg. the likelihood. The number of operations can
be drastically reduced (O(N ∗M2)) due to the �rst order Markov assumption.

As to explain the Hidden Markov Model, using the weather example from before, we
now consider the following modi�cation to the weather problem [3]:

Earlier it was possible for us to observe the weather directly, now assume that you
have been locked into a room for several days, and you have no windows, so the
only way you can assume something about the weather outside is by observing if the
person who brings food to you (hereafter called caretaker) have brought an umbrella.
The following probabilities apply (see table 2 page 10)

So the observable variable Y can only take two values namely {C1 = umbrella, C2 =
no umbrella}. The hidden variable is now the weather, so X consist of three states
{S1 = sunny, S2 = rainy, S3 = foggy}. Now we assume that the values of the
transition matrix have not been changed, so it is now possible for us to answer
questions like,

suppose that the day you where locked into the room it was sunny. The next day the
caretaker carried an umbrella into the room, now what is the probability that today
is rainy?

This question can be posed using probabilities :

p(x2 = S2|y2 = C1, x1 = S1) (19)

And answered by the help of Bayes formula and the Markov property

10



p(x2 = S2|y2 = C1, x1 = S1) =
p(x2 = S2, y2 = C1, x1 = S1)

p(y2 = C1, x1 = S1)
(20)

=
p(x2 = S2|x1 = S1)p(y2 = C1|x2 = S2)p(x1 = S1)∑

x2
p(y2 = C1, x2, x1 = S1)

(21)

=
p(x2 = S2|x1 = S1)p(y2 = C1|x2 = S2)p(x1 = S1)∑

x2
p(y2 = C1|x2)p(x2|x1 = S1)p(x1 = S1)

(22)

=
p(x2 = S2|x1 = S1)p(y2 = C1|x2 = S2)∑

x2
p(y2 = C1|x2)p(x2|x1 = S1)

(23)

=
0.05 · 0.8

0.1 · 0.8 + 0.8 · 0.05 + 0.3 · 0.15
= 0.243. (24)

The transition from eq. (20) to eq. (21) is due to the Markov property. In the
denominator the variable x2 is added and removed by inference using Bayes rule. So
there is approximately 25% chance that the day will be rainy.

Another question, which might be relevant is,

still assuming that the day you where locked in it was sunny. You have observed that
the caretaker brought an umbrella on day 2 but did not bring an umbrella on day 3,
so what is the probability that day 3 is foggy ?

This would still be possible to answer without to many calculations similar to what we
did in the simple Markov case. Now consider this hypothetical question : Given the
day you where locked in it was sunny. The following �fty (50) days you have observed
if the caretaker have brought an umbrella or not, then what is the probability that day
51 is sunny ?.

The question posed in probabilities would be p(x51 = sunny|y2:50, x1 = sunny).
Basically one have to sum out all the states between day 1 and day 51 to answer this
question, a really hard task!

To overcome this task in reasonable time, the forward recursion also denoted as the
forward algorithm is introduced.

3.1 The forward recursion

Due to the �rst order Markov property it is possible to answer questions as the above
recursively using the forward algorithm. The forward variable denoted as α(y1:t, i)
is the joint probability (for more details see appendix A page 19)

α(y1:t, i) = p(y1, y2, .., yt, xt = Si). (25)
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The forward variable can be recursively determined:

1. Initialization

α(y1, i) = πi(1)bSi(y1) for 1 ≤ i ≤ M (26)
where M still represents the number of hidden states.

2. Recursion

α(y1:t+1, j) =

[
M∑

i=1

α(y1:t, i)ai,j

]
bSj (yt+1) for t = 1, 2, .., T − 1, 1 ≤ j ≤ M . (27)

With the forward algorithm it is now possible to determine the likelihood. The
likelihood of the observation sequence Y = {y1, y2, .., yT } can then be calculated by
summation over the last state xT .

p(Y|M) =
∑
xT

p(y1:T , xT ) =
M∑

i=1

α(y1:T , i). (28)

The computation of the forward variable can consist of a large number of values that
are less than 1. Hence after a few observations the values of the forward variable
will head exponentially towards zero, exceeding the �oating point precision. The
numerical problems introduced can be solved by scaling which will be discussed in
section 3.5 page 17.

With the alpha recursion at hand, it is possible in a few lines of code to recursively
calculate the question posed earlier. We are interested in calculating the following
probability (where t = 51):

p(xt = sunny|y1, y2, ..., yt) =
α(y1:t, 1)∑M
i=1 α(y1:t, i)

(29)

The calculation in eq. (29) can be obtained using Bayes rule and the de�nition of
α(y1:t, i).

The problem of answering the question p(xt = sunny|y1, y2, ..., yt) is also known as
�ltering in the litterature. The reason for this terminology comes from the interpre-
tation that the observables (or outputs) yt is providing "noisy" information about
the underlying "signal" xt. The inference problem is then "�ltering" the noise from
the signal.
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The complexity of this algorithm can be determined to be O(TM2) assuming we
have T observables.

Another question which might be relevant to ask is the following Given the day you
where locked in it was sunny (so p(x1 = sunny) = 1). The following �fty (50) days
you have observed if the caretaker was bringing an umbrella or not, then what is the
probability that day 20 was sunny ?

Formulating this question as probabilities we want to answer the following question
(T = 51 and t = 20)

p(xt = sunny|y1, y2, .., yt, .., yT ) (30)

One could think, why not just sacri�ce the additional samples we have observed and
then just run the forward recursion as to determine p(xt = sunny|y1:t) disregarding
the additional information ?

The simple answer to this question is that the additional data, which we are given,
strengthens our assumptions about the true outcome at that speci�c day. The prob-
lem of determining questions like p(xt = sunny|y1:T ) is in the litterature also known
as the smoothing (interpolation) problem.

3.2 The backward recursion

To be able to solve the smoothing problem we need to be able to calculate the
following probability p(yt+1, yt+2, .., yT |xt = Si). Why this probability you might ask!
The simple explanation is given by rewriting the smoothing problem into something
recognizable :

p(xt = Si|y1:T ) =
p(y1:T |xt = Si)p(xt = Si)

p(y1:T )
(31)

=
p(y1:t|xt)p(yt+1:T |xt = Si)p(xt = Si)

p(y1:T )
(32)

=
p(y1:t, xt = Si)p(yt+1:T |xt = Si)

p(y1:T )
(33)

=
α(y1:t|i)β(yt+1:T , i)

p(y1:T )
(34)

where we de�ne β(yt+1:T , i) = p(yt+1, yt+2, .., yT |xt = Si). In eq. (31) we simply use
Bayes rule as to rewrite the smoothing problem in to something dependent on the
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underlying state at time t. Due to the �rst order Markov property the step from eq.
(31) to eq. (32) is feasible. The step from eq. (32) to eq. (33) is to generate the joint
distribution such that we can write up the expression in eq. (34). We recognize the
forward variable α(y1:t|i), which we know how to calculate. The likelihood p(y1:T )
can be calculated after one complete run with the forward algorithm. The only thing
we have to determine to be able to solve the smoothing problem is β(yt+1:T , i) =
p(yt+1:T |xt = Si).

As with the forward algorithm it is possible with the use of Bayes formula and
the Markov properties to derive a recursive formula for determining the backward
variable. More details can be found in appendix A page 19.

1. Initialization

β(yT , i) = 1 , 1 ≤ i ≤ M (35)

2. Induction

β(yt:T , i) =
M∑

j=1

ai,jbSj (yt+1)β(yt+1:T , j) (36)

for t = T − 1, T − 2, .., 1 and 1 ≤ i ≤ M

The computational requirements of the backward recursion is similar to the forward
recursion, O(T ×M2) operations.

As with the forward algorithm there will be problems with the �oating point precision
when calculating the backward variable. As to overcome these problems scaling is
needed. This issue will be discussed in section 3.5 page 17.

3.3 Estimation of parameters in a HMM

In both the weather example and the coming coin-tossing example we are given the
initial state probabilities, transition probabilities and emission probabilities. In the
general case we do not know these probabilities, so we have to use a training set to
determine these parameters.

As with the Markov-Model estimation of parameters for the HMM can be done
by maximizing the likelihood function. Due to the fact that we are working on
incomplete dataset since some of the variables are hidden (the hidden states) we can
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use the EM-algorithm to �nd the parameters of the model. Using the EM-algorithm
one �nds update formulas for the initial state probabilities, transition probabilities
as well as the emission probabilities. In ref. [1] update formulas is given for both
discrete and continuous emission probabilities.

3.4 Tossing coin example

The coin tossing example (see, eg. [1]) is a good example to illustrate what you have
just learned. The plots as well as the code for the plots have been generated using
MATLAB-code provided in the course.

You are placing bets on the outcome of coin-throws. The person throwing the coins,
shifts between two coins with a certain probability: The probability of shifting from
coin 1 to coin 2 is 0.05 and the probability of changing from coin 2 to coin 1 is 0.1.
The di�erence between the coins is that one is biased (coin 2, p(head) = 0.9) and
the other is unbiased (coin 1,p(head) = 0.5).

We do not have any prior information on which coin is thrown the �rst time, so the
initial state probability must be p(x1 = coin2) = 0.5. The scenario can be sketched,
see �gure 5 page 15.

COIN1 COIN2

0.1

0.05

0.95 0.9

Figure 5: States and Transition probabilities of throwing coins example

From the above information the transition matrix, emission matrix and the initial
state probability vector can be determined

A =
[

0.95 0.05
0.1 0.9

]
B =

[
0.5 0.9
0.5 0.1

]
πππ1 =

[
0.5
0.5

]
.

We now observe 200 outcomes of the experiment, where the coins have been thrown
according to the above probabilities.

One outcome may look like �gure 6 page 16, where both the observed variable and
hidden variables have been shown (normally we do not know the true underlying
states). The person throwing the coins will not tell you when he is using the biased
coin, however applying what we know on Hidden Markov Models, the posterior
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probability p(xt = coin2|y1:T ) for t = 1..T provides us the probability that coin 2
was used, given the observed sequence y1:T .

20 40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

(HEAD)

(TAIL)

n

The observed sequence − emitted symbols

20 40 60 80 100 120 140 160 180 200
0.5

1

1.5
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2.5

(COIN 1 − UB)

(COIN 2−B)

n

The hidden states

Figure 6: A simulation run using the above model assumptions

In �gure 7 page 16 we plot the probability of coin 2 given the observed sequence.
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Figure 7: The posterior probability determined from a forward-backward run

From the plot we see a very good correlation with the true underlying states, which
we do not immediately observe through the observed sequence from upper �gure of
�gure 6 page 16.

The next thing we will investigate is the e�ciency of estimating the parameters of
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the HMM. This is done using the EM-algorithm. Generating a sequence of throws of
length 200 and running the EM-algorithm using a stop-criterium of log(p(y1:T |Mk))−
log(p(y1:T |Mk−1) < 1e− 5) where k is the iteration index on the HMM parameters,
gives the following estimates of A,B and πππ1

Ã =
[

0.94 0.06
0.07 0.93

]
B̃ =

[
0.48 0.95
0.52 0.05

]
π̃ππ1 =

[
0
1

]

which is not that far from the true parameters. As to improve the guess a longer
observation sequence is needed. The initial state probability is not so close to the true
values. The initial state probability though, is only critical during the �rst states,
since the HMM tends to forget what happened N samples ago (the correlation is
exponentially decaying), due to the �rst order Markov property.

3.5 Methods to overcome numerical problems

Until now we have not discussed any practical problems, but there is a problem when
implementing the HMM in a computer due to �nite precission. In the small examples
given, only small alphabets have been used (in the weather example only 3 states
was used, and the emission probability could only attain one of two values). When
multiplying together a lot of probabilities (numbers between 0 and 1), we might get
into problems with machine inaccuracy. As to avoid numerical problems one have
to scale the forward variable as well as the backward variable during recursion. The
idea of scaling was originally proposed by ref. [1], and basically all you have to do
is to change the way you calculate the forward and backward variables. Technical
details can be found in ref. [1].

3.6 Summary

You have been introduced to the Hidden Markov Model. This model is more ver-
satile than the normal Markov Model. The Hidden Markov Models are used in
many situations where sequential data needs to be modelled. Some examples where
Hidden Markov Models is used is bioinformatics, speech-recognition, hand-writing
recognition. You have been introduced to the following important subjects

• Observed the di�erence between a Markov Model and the Hidden Markov
Model

• Been introduced to the emission probability
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• Recognized that the forward, backward- recursions is fast implementations of
the full inference problem

• Found that we need an optimization scheme such as the EM-algorithm to
�nd the initial state probability, transition matrix and emission probability
parameters
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A The forward, forward backward algorithm in proba-
bilities

In this appendix we will derive de�ne the forward - variable α(y1:t, i) and the back-
ward variable β(yt+1:T , i) for i = 1, 2, 3, .., M . In many cases we are interested in
calculating the conditional probability p(xt|y1:T ). The conditional probability was
also calculated in section 3.2 page 13 but are repeated here to get an overall impres-
sion. Using Bayes rule, we can rewrite this probability

p(xt|y1:T ) =
p(y1:T |xt)p(xt)

p(y1:T )
(37)

=
p(y1:t|xt)p(yt+1:T |xt)p(xt)

p(y1:T )
(38)

=
p(y1:t, xt)p(yt+1:T |xt)

p(y1:T )
(39)

=
α(xt)β(xt)

p(y1:T )
(40)

where α(xt) = p(y0, y1, .., yt, xt) is the forward variable and expresses the probability
of emitting the partial sequence of outputs y0, y1, .., yt and ending up in state xt. The
backward variable β(xt) = p(yt+1, .., yT |xt) is the probability of emitting the partial
sequence of outputs yt+1, .., yT given that the systems starts in state xt. Using the
conditional independence in Markov Models it is possible to split the probability in
eq. (37) to eq. (38). In eq. (39) the terms have been regrouped by multiplication of
p(xt).

It is now possible with the de�nition of the forward variable to derive the recursive
formulas using the conditional independence property3 as well as Bayes rule

3Conditioning on a state
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α(xt+1) = p(y0, .., yt+1, xt+1) (41)
= p(y0, .., yt+1|xt+1)p(xt+1) (42)
= p(y0, .., yt|xt+1)p(yt+1|xt+1)p(xt+1) (43)
= p(y0, .., yt, xt+1)p(yt+1|xt+1) (44)
=

∑
xt

p(y0, .., yt, xt, xt+1)p(yt+1|xt+1) (45)

=
∑
xt

p(y0, .., yt, xt+1|xt)p(xt)p(yt+1|xt+1) (46)

=
∑
xt

p(y0, .., yt|xt)p(xt+1|xt)p(xt)p(yt+1|xt+1) (47)

=
∑
xt

p(y0, .., yt, xt)p(xt+1|xt)p(yt+1|xt+1) (48)

=
∑
xt

α(xt)p(xt+1|xt)p(yt+1|xt+1) (49)

=
∑
xt

α(xt)axt+1|xt
bxt+1(yt+1). (50)

The last expression, eq. (50), is the same update formula as given in eq. (27). In
eq. (47) remember that p(y0, .., yt|xt+1, xt) = p(y0, .., yt|xt).

It is also possible to determine the recursive update for the backward variable, again
using the conditional independence and Bayes rule

β(xt) = p(yt+1, .., yT |xt) (51)
=

∑
xt+1

p(yt+1, .., yT , xt+1|xt) (52)

=
∑
xt+1

p(yt+1, .., yT |xt+1, xt)p(xt+1|xt) (53)

=
∑
xt+1

p(yt+2, .., yT |xt+1)p(yt+1|xt+1)p(xt+1|xt) (54)

=
∑
xt+1

β(xt+1)bxt+1(yt+1)axt+1,xt . (55)

In eq. (54) remember that p(yt+2, .., yT |xt+1, xt) = p(yt+2, .., yT |xt+1). The expres-
sion obtained in eq. (55) is the same expression as for the backward recursion given
in eq. (36).
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