
02457 Non-Linear Signal Processing,

Mini project in speech processing, part I of III

This exercise is based on L.R. Rabiner A tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE 77, 257-286, (1989).

Print and comment on the figures produced by the software as outlined below at the
Checkpoints, this exercise is split in three parts, hence, performed over three Thursday
sessions.

Speech recognition

Consider a system where the task is to recognize a single spoken word, generally referred
to as isolated word recognition. Thus, assume we have a vocabulary of R words to be
recognized and that each word is to be modeled by a distinct sequence model. This
involves the following steps:

• Feature Extraction: A frame based spectral and/or temporal analysis of the speech
signals is performed to give observation vectors, yt, which can be used to train the
sequence models.

• Symbol identification: Use a training set of L occurrences of each spoken word, i.e.,
L×R sequences, to derive a codebook containing K possible observation (feature)
vectors using vector quantization methods. Subsequently, any observation vector
used for either training or recognition is quantized using this codebook.

• Training of the sequence models based on a training set.

• Recognition using the sequence models.

Feature Extraction

The feature vector sequence {y1,y2, . . . ,yT} is obtained from front-end spectral analysis
of the speech samples. Many features have been used as observations, but most prevalent
are the LP parameters, cepstral parameters, and related quantities.

First, the sampled speech signal is blocked into frames of N samples, for example
N = 320 corresponding to 32 ms at 10 kHz sampling frequency. Consecutive frames are
spaced ∆N samples apart, e.g., ∆N = 80 samples, such that the analysis frame end-
times are m = {320, 400, . . . , Ns} which become observation times t = {1, 2, . . . , T}. For
a typical word utterance lasting 1 sec, the signal length Ns = 10000 samples and the
number of frames are T = 122.

Each frame is multiplied by an N -sample window (Hamming), and the autocorrelation
function is found to lag M , where M is the order of the desired LPC analysis (we use M =
12). The so-called LPC coefficients are computed by using the Levinson-Durbin recursion,
and then converted to Q = 12 cepstral coefficients. To add dynamic information, Q
temporal difference cepstral coefficients are computed and concatenated to form a 2Q
dimensional vector representing each frame.
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Checkpoint 10.1

Use the matlab script main10a.m to perform feature extraction on a speech signal using
the above described procedure. The script produces two figures. Figure 1 depicts the
features derived from windows of three letters s,o,f, each letter has two instances that we
here refer to as the training and test cases. Locate the part of the images that “belong” to
the three letters. Comment on the similarity and differences between the letter features
and the relation between training and test sets.

The second figure shows a scatterplot of data projected on the two most variant
directions in feature space. Comment on the separation of the feature vectors for the
three letters s,o,f.

Symbol identification

Since we want to use a sequence model with a discrete observation symbol density, rather
than the continuous feature vectors above, a clustering algorithm is used to derive a
“codebook” containing K possible observation values. Thus, for each occurrence of a
word, the feature extraction creates a sequence {y1,y2, . . . ,yT} of observation vectors
(one for each frame), which are quantized into one of the permissible set resulting in
the scalar, discrete observation sequence {y1, y2, . . . , yT}, where each of the variables yt

may take only integer values k (codebook index) in the range 1 ≤ k ≤ K. When we
finally assemble a speech recognizer (part III of the mini project) we will use the K-means
algorithm to form the codebook.

Training simple sequence model

Given discrete observation sequences from the words in the vocabulary, we next would like
to estimate sequence models for each word, i.e., compute the probabilities P ({yn}|word).
Using the Bayes rule

P (word|{yn}) =
P ({yn}|word)P (word)

P ({yn}) (1)

we can compute the posterior probability of each word given a sequence.
Here we will use a simple Markov chain model, in the second part of the exercise (next

Thursday) we will generalize this to hidden Markov models. Let yn be a sequence of N
symbols with K states. Let aj,j′ be the probability of jumping from j to j′. To ensure
that we always jump to some state, the matrix aj,j′ must satisfy

∑
j′ aj,j′ = 1. a can be

estimated by maximum likelihood:

P ({yn}|a) = P (y1)
N∏

n=2

P (yn|yn−1, a)

= P (y1)
∏

j,j′
(aj,j′)

nj,j′

where nj,j′ is the occurrence of the transition, and P (y1) is the probability of starting
in state y1. Since we only have one sequence for training we will let this be estimated
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as P (y1) = 1/K. Using softmax to ensure the normalization condition
∑

j′ aj,j′ = 1 we
obtain the solution,

âj,j′ =
nj,j′∑
j′ nj,j′

Checkpoint 10.2

Use the matlab script main10b.m to create a random transition matrix. This matrix
is used as a “teacher” that can create training and test sequences. First, we find the
“stationary distribution” of symbols, this is the probability distribution that satisfies,

P ∗(j′) =
∑
j=1

P ∗(j)aj,j′ .

Explain how the program estimates the stationary distribution and explain it’s signif-
icance.

Use the transition matrix to create increasing length sequences, and observe how the
histogram of the observed sequences converge to the stationary distribution. Explain the
function getint.m.

Verify the maximum likelihood estimate of the transition matrix. Use the matlab
script (main10b.m) to generate increasing length sequences. Train a “student” transition
matrix on these sequences, and show that the error of the student matrix converge to
zero, hence, the student matrix converge to the teacher matrix for large training sets.

Peter S. K. Hansen and Lars Kai Hansen, November, 2001, 2006.
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