Exploring the limits of EEG

-time, space & content

EEG signals reflect information processing by a
~_ complex organ trying to manage a complex

environment
patent

EEG based inference will always be extremely
ill-posed

Strong priors are needed!

So - .
What jf YOu could type directly from your brain

% Lars Kal Hansen
DTU Compute,
Technical University of Denmark
Ikai@dtu.dk “Facebook has 60 people working on how to read your mind
According to FB it's developing technology to read your brainwaves so that you don't
have to look down at your phone to type emails, you can just think them.”
Guardian April 19, 2017




Long term aim of neurotechnology...
Connect cognitive neuroscience and normal behavior

Conventional EEG system

Discreet, unobtrusive and user-

friendly assistive devices for
Wearable EEG system everyday life

Ear-EEG/Hyposafe device

High-performance research
and clinical EEG system

Brain state representations connected by machine learning

"We don'’t really know which, when or why brain states occur in the wild....

Lars Keoecareer
DTU Compute, Technical University of Denmark
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Oticon mobile EEG device
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Exploring the limits to EEG

System level

Time & space — where and how long...
towards permanent EEG: - UNEEG, ear-EEG
smartphone brain scanner 11

Content — what are the limits to mindreading?
EEG in the classroom

Brain level

Time & space — spatio-temporal resolution of EEG?

Bayesian inference with priors — infer forward model
Content — deep decoding with personal priors
Smartphone brain scanner Il

Lars Kai Hansen
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Systems level limits:

Time & space EEG - where and how long...?

Lars Kai Hansen
DTU Compute, Technical University of Denmark
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Expanding the reach of EEG: Ear-EEG and UNEEG

Extended recording in the wild:”Neurotechnology for 24/7 brain monitoring”
- naturalistic condition brain imaging experiments

Medical applications: Hypoglemia, epilepsia, sleep, ...

Well-being: Hearing, attention, sleep scoring
resting state/mind wandering

P. Kidmose et al. Auditory Evoked Responses from Ear-EEG fles
Recordings. IEEE EMBS (2012) RE

{c) Right ear with earplug. (d) Side view of test subject
showing the recording setup.

Fig. 1. View of a right ear earplug and the Ear-EEG recording setup.

UNEEG™ medical — formerly HypoSafe - was founded in 2005 by Henning Beck-Nielsen a leading diabetes scientists, with a
mission to help individuals suffering from hypoglycemic attacks. Beck-Nielsen found that hypoglycemia could be predicted
timely and reliably from the EEG patterns in the brain. https://www.uneeg.com/
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UNEEG device ultra-long EEG - mental state predictability

Fano Ineq. bound on predictability of spectral microstates (ts=1 sec)
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Establish strong priors for Ear-EEG decoding
by linking EEG from scalp and ear

METHODS
published: 30 June 2017
doi: 10.3389/fnhum.2017.00341

1? frontiers )
in Human Neuroscience
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On the Keyhole Hypothesis: High
Mutual Information between Ear and
Scalp EEG
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Mikkelsen, K.B., Kidmose, P. and Hansen, L.K., 2017. On the Keyhole Hypothesis: High Mutual
Information between Ear and Scalp EEG. Frontiers in human neuroscience, 11, p.341.
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Systems level limits:

3D imaging & content decoding
beyond the lab

Smartphone brain scanner |1

Lars Kai Hansen
DTU Compute, Technical University of Denmark
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Why 3D real-time imaging?

Enable on-line visual quality
control

Neurofeed applications can be
based on activity in specific
brain structures /networks

Context priors may relate to 3D
location (from meta analysis)

Evidence that BCI /decoding
can be improved by 3D
representation

Lars Kai Hansen
DTU Compute, Technical University of Denmark
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Fig. 3. Distribufion of memaory and pain brain activations in the posterior cingulate cortex shown on a sagittal plot p is fhe AP axiz with posterior 3 negative.
The blue outline follows that of fhe Talairach stlas, The gray outline iz an isocurvature ina probahility velume for posterior cingulate coriex based on modeling
of coprdinates from the Brede datshase. Green squares are associated with “memory™ aticles and red triangles with “pain” anicles.

Finn Arup Nielsen, Daniela Balslev, Lars Kai Hansen, "Mining the Posterior Cingulate:
Segregation between memory and pain components”. Neurolmage, 27(3):520-532,
(2005)

Trujillo-Barreto, Nelson J., Eduardo Aubert-Vazquez, and Pedro A. Valdés-Sosa.
"Bayesian model averaging in EEG/MEG imaging." Neurolmage 21, no. 4 (2004):
1300-13109.



Source representation can improve decoding

Besserve et al. (2011)

. reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level
approach in terms of information transfer and also reduces redundancy between coherence and power
features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients
reflect the most informative features of network activity, showing an important contribution of localized
motor and sensory brain areas, and of coherence between areas up to 6 cm distance.

Ahn et al. (2012)
... source imaging may enable noise filtering, and in so doing, make some invisible discriminative information
in the sensor space visible in the source space.
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Fig. 6. Effect of redudng the number of sources or variables, for power +coherence quantification at the source level a) Average ITR as a function of the number of variables for two
variable ranking techniques: univariate ranking with a Student's t-test and multivariate ranking with the coeffident of a SVM classifier. The ITR values using a sparse number of
variables with the AROM classifier (see text) and all variables with an SVM are plotted for comparison. b) Influence of the number of cortical dipoles used in the forward model on the
ITR: percentage improvement of ITR with respect to electrode level quantification, for each type of couples of tasks { motor, non-motor and mixed couples).

Congedo, Marco, Fabien Lotte, and Anatole Lécuyer. "Classification of movement intention by spatially filtered electromagnetic inverse solutions."
Physics in Medicine and Biology 51, no. 8 (2006): 1971

M Besserve, J Martinerie, L Garnero "Improving quantification of functional networks with eeg inverse problem:

Evidence from a decoding point of view." Neurolmage 55.4 (2011): 1536-1547.

Minkyu Ahn, Jun Hee Hong, Sung Chan Jun: "Feasibility of approaches combining sensor and source features in brain—computer

interface.” Journal of Neuroscience Methods 204 (2012): 168-178.
Andersen, R.S., Eliasen, A.U., Pedersen, N., Andersen, M.R., Hansen, S.T. and Hansen, L.K., EEG source imaging assists decoding in a face recognition



Smartphone brain scanner at YouTube

Lars Kai Hansen
DTU Compute, Technical University of Denmark
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https://www.youtube.com/watch?v=i_66KAOzXhU
https://www.youtube.com/watch?v=i_66KAOzXhU

Limits to imaging

Linear, ill-posed
iInverse problem

Sefisor positions

3D Source localization

* Segmentation (create mesh)
» Co-registration
* Forward computation

* |[nverse estimation

Preprocessing
* Filtering
- * Downsampling
X: NxT B ———
Y- K X T * Artefact detection (continuous/epochs)
B » Bad channels / trials
A: KxN » Eye, muscles
* Baseline correction
* Averaging / multiway analysis
N >> K |
Aim: “fmri resolution at 50Hz”

- strong priors needed!

SBS2: smoothness/ minimum norm
Bayesian inference @ 10 sec.

SBS3: Spike and slab prior
Variational inference @ frame rate,
128 msdelay windows

Forward problem

"*-..,__Jnvemeprc-blenl_,_-r
N

Yie = E Ap n Xnt + Ei .
n=1

ST Hansen, S Hauberg, LK Hansen. Data-driven forward model inference for EEG brain imaging. Neurolmage, 139(1):249-258 (2016)
|| ST Hansen, LK Hansen. Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior. Neurolmage, 148:274-283(2017)
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SBS2 functions (
Exp O Global observatory

on digital society

Real time system

— Bayesian minimum norm 3D reconstruction with a variety of
forward models (N=1024).

— Adaptive SNR model (B,a) estimated every 10 sec.

— Update speed — 40 fps (Emotiv sample rate 128Hz, blocks of 8
samples)

— Selected frequency band option

— Spatial averaging in "named” AAL regions
Mobile experiment set-ups, so far...

— Common spatial pattern- BCI

— Stimulus presentation options: video, image, text, audio

— Neuro-feedback %

Lars Kai Hansen
DTU Compute, Technical University of Denmark



Do we get meaningful functional volumes?

Class: RIGHT

or Imagined finger tapping
Left or right cued (at t=0)

Signal collected from an
AAL region (n=80)

-2+

Normalized Power

A. Stopczynski, C. Stahlhut, M.K. Petersen, J.E. Larsen, C.F. Jensen, M.G. lvanova, T.S. Andersen, L.K. Hansen. Smartphones as pocketable labs: Visions for
mobile brain imaging and neurofeedback. International Journal of Psychophysiology, (2014).

A. Stopczynski, C. Stahlhut, J.E. Larsen, M.K. Petersen, L.K. Hansen. The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System. PloS one 9
(2), 86733, (2014)

Meier, Jeffrey D., Tyson N. Aflalo, Sabine Kastner, and Michael SA Graziano. Complex organization of human primary motor cortex: a high-resolution fMRI
study.Journal of neurophysiology 100(4) :800-1812 (2008).



Enabling EEG outside the lab

Mobile real-time EEG Imaging
-EEG in the classroom
-Neurofeedback
-Digital media & emotion
-Bhutan Epilepsy Project

SCIENTIFIC REPLIRTS

OPEN | Validation of a smartphone-based
EEG among people with epilepsy: A
prospective study

Received: 16 December 2016 Erica D, Mel K *, Andrew S. P. Lim?, Edward C. W, Leung?, Andrew J. Cole?, Alice D, Lam?,
Farrah J. Mateen, Massachusetts General Hospital, e 1 e 07 o o e T e s
Published: 03 April 2017 er el ee’, S h] Clark?, Jos: phM Cohen!, Jo Mantia?,
L Grand Challenges CANADA B s R Srtt, s bt i ozl At oo,
: Sydn: yS Ca h &F rah J. M teel

DTU Compute, Technical University of Denmark
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| SCIENTIFIC REPLIRTS

OPEN. EEG in the classroom: Synchronised
“neural recordings during video

presentation
Received: 26 April 2015 Andreas Trier Poulsen®’, Simen Kamronn®’, Jacek Dmochowski*?, Lucas C. Parra® &
Accepted; 01 February 2017 Lars KaiHansen®
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AT Poulsen, S Kamronn, J Dmochowski, LC Parra, LK Hansen. “EEG in the classroom: Synchronised neural recordings during video presentation”.  Scientific Reports, 7 (2017).
JP Dmochowski, MA. Bezdek, BP Abelson, JS Johnson, EH Schumacher, LC Parra, “Audience preferences are predicted by temporal reliability of neural processing”,
Nature Communications 5: 4567, July 2014.
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Limits to brain state inference:

Time & space

Pushing the limits to imaging with EEG

Lars Kai Hansen
DTU Compute, Technical University of Denmark
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Smooth, sparsity promoting priors

Bayesian inference with Variational Garrote
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DTU Compute, Technical University of

Hansen, S.T. and Hansen, L.K., 2017. Neurolmage, 148, pp.274-283
Spatio-temporal reconstruction of brain dynamics from EEG with a Markov prior.
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. - - . . Forward models from a three-
Reduce limitation to imaging :

layer BEM /
Infer the forward model Y = AX + E 7

Electrodes _,"
f

Can we trust the forward model?
- Anatomy is known from MRI, CT?
- Conductivity ratios?

1) Forward model is inaccurate...but useful as "prior”

- Represent forward model uncertainty as "naive Bayes”

multivariate normal (ARD)
- Estimation embedded with source reconstruction

1) Data driven approach

- Representing forward model uncertainty as multivariate normal

"probabilistic PCA”
- Estimating embedded with source reconstruction

Lars Kai Hansen
DTU Compute, Technical University of Denmark
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Reconstruction of the forward model

Uncertainties involved in the estimation of the forward model
— Tissue segmentation
— Tissue conductivities
— Electrode locations

Estimated

A
-
AA o

0
-
Previous work:

— Genger & Acar, 2004, Lew et al.,2007; Plis et al., 2007, Acar & Makeig, 2013

Lar c. stahlhut, M. Mgrup, O. Winther, L.K. Hansen. Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE) using
DTl a Hierarchical Bayesian Approach. Journal of Signal Processing Systems, 65(3):431-444 (2011).
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The forward model is important!

Magnetoencephalography —theory, instrumentation, and applications
to noninvasive studies of the working human brain

Matti Hamaél&inen, Riitta Hari, Risto J. Ilmoniemi, Jukka Knuutila, and Olli V. Lounasmaa

Brain Topogr (2013) 26:378-396 Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland
DOI 10.1007/510548-012-0274-6

ORIGINAL PAPER

Effects of Forward Model Errors on EEG Source Localization

Zeynep Akalin Acar * Scott Makeig

and brain tissue boundaries for a four-layer MR-based realistic, b four-layer warped MNI, and ¢ four-layer MNI head

Contents lists available at ScienceDirect agittal slice of subject S1

Neurolmage

This is an important result because it suggests that creating individual
cortical meshes (and all the difficulties that this entails) can be an
unnecessary exercise...

journal homepage: www.elsevier.com/locate/ynimg

Technical Note

Selecting forward models for MEG source-reconstruction using model-evidence

R.N. Henson **, |. Mattout ", C. Phillips , K.J. Friston ¢

8 101
1OP PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY
Phys. Med. Biol. 52 (2007) 5309-5327 doi: 10.1088/0031-9155/52/17/014  E g ]
B b
b
o] o
E T 99
4 g
Probabilistic forward model for - ool
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electroencephalography source analysis skl conductty ekl conductivty
(a) Location error (b) Goodness of it
icl2 3 1 l 1 1 Figure 8. Location ermor and the corresponding goadness of fit values for 32 single dipole problems
IS’E:gi)j ‘ItllPllS ]’ J(:lhgs .(:;](\);gse f]Sl?(riltg] ¢ Jl.ll'l ’ DO“g M Ranken ’ simulated with the skull conductivity value set to 0.01021 /(€2 m) but analyzed with different fixed
etr olegov' an avl chmi values of skull conductivity.
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_— vV, Ca v_ﬁ é‘ﬁ 1‘}, é"
Repairing a wrong forward NJ P NI
= f/a \| | (A \|
model with ARD N, U;'/_ \r)
) G

Figure 4.2: Graphical representation of the SOFOMORE model. The
blue box including the sources s; and observations m; ndicates expansion over
time t. At the lowest level in the hierarchical structure we also find the forward
model A with fixed prior mean A(®). The middle layer includes ¢ precision
parameter for the sources with a seperate precision parameter (inverse variance)
assigned to each dipole. # is the inverse variance of the noise contribution and
= includes a precision parameter to each column in A. At the top level we have
the hyperhyperparameters controlling the hyperparameters in the middle layer.

256 most active dipoles 256 most active dipoles 256 most active dipoles

_ VE: 98.11% . VE: 99.12% VE: 99.34%
4
=
& L]
L
g -
(a) MN (b) ARD (c) SOFOMORE
Figure 9 Estimated activity at = 170 ms after stimulus. Tissue to quite scattered activity with two dominating dipoles located
conductivities brain:skull:scalp = 0.33:0.0041:0.33 S/m are used. in the left and right temporal lope. SOFOMORE reconstructs
Activity in the left and right occipital region is estimated by MN activity both in the left and right visual cortex with dominating
with the primary activity located in the right occipital region. activity in the left region.

Moreover, right frontal activity is reconstructed. The ARD leads

Lars Kai Hansen C. Stahlhut, M. Mgrup, O. Winther, L.K. Hansen. Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE) using
DTU Compute, Tech a Hierarchical Bayesian Approach. Journal of Signal Processing Systems, 65(3):431-444 (2011).



Representing forward model uncertainty

Can it be estimated even if we do not have anatomy?

A data driven approach

A Structural MRI data B: Forward models from a three- C:PCA corpus forward model space

layer BEM /
4 g scap EN Hi hmgc:h’it)‘\
7 ‘Outersku. J ~.
/ ™~
Electrodes (/ \
o..
Se .
B St 1

COOTOr T m ° :

Low conductivity

-

D s WA IRE W B B :
Test Subject oBmen 06 ¢ GEMDED OB © oo H
Peiensl Subject 16
o o8

Test forward model

Fig. 1. lllustration of the process of creating forward models and their projection to PCA space. (A) For each of the 16 subjects a T1-weighted image is used to construct
a forward model. (B) The forward model is here constructed using a three-layered BEM head model (scalp-skull-brain). For each subject 100 forward models are created, these
have varying skull:brain conductivity; from 1 : 250 to 1 : 15. (C) 2D PCA projection of the forward models.

Lars

Hansen, S.T., Hauberg, S. and Hansen, L.K., 2016. Data-driven forward model inference for EEG brain imaging. Neurolmage, 139, pp.249-258.
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Reducing forward model uncertainty

Augment VG Free energy to
incorporate time series and forward
model fitness

Amplitude [V]

T rUe signal
Estimated signal Difference in true
and estimated signal

T~

Source found to be active

Fig. 2. The Free Energy is a measure of model evidence and expresses the
Bayesian combination of data fit (model likelihood), forward model prior distribution
based on the forward model corpus, and the source density sparsity promoting prior.

Smooth spatial cross-validation
To estimate regularization (sparsity)

Lars

Hansen, S.T., Hauberg, S. and Hansen, L.K., 2016. Data-driven forward model inference for EEG brain imaging. Neurolmage, 139, pp.249-258.
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Fig. 3. Recovery of the true forward model among both test and training subjects
for simulated data, SNR= 5 dB. (A) The partioning of the 70 10-20 EEG electrodes
into four folds. Each color represent one fold. (B) The sparsity levels obtained when
running four-fold cross-validation on the test subject (red) and the best performing
non-test subject (blue). The found sparsity levels are smoothed across conductivity
ratios. (') The free energy calculated on all electrodes using the smoothed sparsity
parameter. (D)) The normalized mean squared cross-validation error, also calculated
on the smoothed sparsity levels. The mean of the training subjects is shown in black
along with the standard deviation in grey. The black 'x' indicates the data generating
forward model.
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Reducing forward model uncertainty
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Fig. 4. Recovery of the true forward model among both test and training subjects
for simulated data, SNR= 5dB. (A) The localization error and F-measure for test
and best training subject, as well as the mean of all training subjects. Localization er-

°1T=:1::;;ﬁ Skull:Brain Conductivity Ratio Skull:Brain Conductwrly Ratio

Fig. 3. Recovery of the true forward model among both test and training subjects

for simulated data, SNR= 5 dB. (A) The partioning of the 70 10-20 EEG electrodes ror is the sum of the Euclidian distances between planted and strongest reconstructed
. ' ) . . left and right sources. (B) The source distribution found when using the forward
into four folds. Each color represent one fold. (B) The sparsity levels obtained when . . L .

running four-fold cross-validation on the test subject (red) and the best performing model with lowest frec? erTergy.. The location of the plantel:d activity s identical to the
non-test subject (blue). The found sparsity levels are smoothed across conductivity reconstructed and their sinusoidal development are seen in black.

ratios. (C') The free energy calculated on all electrodes using the smoothed sparsity
parameter. (D) The normalized mean squared cross-validation error, also calculated
on the smoothed sparsity levels. The mean of the training subjects is shown in black
along with the standard deviation in grey. The black "x' indicates the data generating
forward model.

Smooth spatial cross-validation to estimate regularization (sparsity)
Free energy, cross-validaion, localization error, "F-measure” all agree

L Hansen, S.T., Hauberg, S. and Hansen, L.K., 2016. Data-driven forward model inference for EEG brain imaging. Neurolmage, 139, pp.249-258.
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Reducing forward model uncertainty

2D search for forward model in "PCA space” - leave one-subject-out test on simulated data

F1-measure Localization error Free energy Source reconstruction
1 150 3200 °
-200 -200 s
3150 ¢
-100 100 -100 0
3100 -
0 50 " tmesamples
3050
100 100 ]
0 0 3000 Y ™
-100 0 100 200 100 0 100 200 [Mmm] -100 0 100 200 Posterior Anterior

Flg 5. Search for the optimal forward model in 2D PCA space created by 15 training subjects. A forward model from the sixteenth subject is used to generate the data
(same as Fig. 3 and 4). The search space is set to cover the extrema of the forward model PCA projections of the 15 training subjects. The localization error, F-measure, and
free energy are overlayed with the forward models of the training subjects in black and test subject in grey. The zoom-in shows the optimum found by the BayesOpt toolbox
[45] and the optimum found by 'fminsearch’ when using the previous as an initialization. The source reconstruction from the forward model found with these optimizations are
also shown.

Lars

DTU (/UIII'JLII.U, reorimnear vrmveroilty Ul Daririarn

Hansen, S.T., Hauberg, S. and Hansen, L.K., 2016. Data-driven forward model inference for EEG brain imaging. Neurolmage, 139, pp.249-258.
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Reducing forward model uncertainty

2D search for forward model in "PCA space” - leave one-subject-out test in real EEG data
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Fig. 7. Search for the optimal forward model in 2D PCA space created by 15 training subjects; real EEG data recorded from the sixteenth subject is applied. The projections
of training subjects and the test subject are seen in black and grey, respectively. Due to uncertainty concerning the bandwidth controlling the smoothing of the sparsity, several
bandwidths are applied, shown are the averages across these.

Visual processing (face vs non-face)

Fig. 6. Source density found at minimum free energy for real EEG data. The lo-

Test subject activation location well aligned with EEG
cation of the strongest source is circled and its activity is depicted in red, the remaining . .
’ Results in state-of-the-art comparison (Henson et al, 2009)

L Hansen, S.T., Hauberg, S. and Hansen, L.K., 2016. Data-driven forward model inference for EEG brain imaging. Neurolmage, 139, pp.249-258.
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Conclusion

Connect cognitive neuroscience,
state monitoring, and daily life

EEG poses many extremely ill-posed problems that limit research
and applications

Increasingly sophisticated prior information can help push the
limits!

What about the limits to brain state decoding?
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Fig. 7. Search for the optimal farward model in 20 PCA space created by 15 training subjects: real EEG data recorded from the sixtesnth subject is applied. The projections
of training subjects and the test subject are seen in black and grey, respectively. Due to uncertainty concerning the bandwidth ¢ lling the othing of the sparsity, several

bandwidths are applied, shown are the averages across these
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a1

Fig. 1. llustration of the process of creating forward models and their projection to PCA space. (A) For each of the 16 subjects a Tl-weighted image is used to construct
a forward model, (B) The forward model is here constructed using a three-layered BEM head model (scalp-skull-brain). For each subject 100 forward models are created, these
have varying skull:brain conductivity; from 1 : 250 ta 1 : 15. (C) 2D PCA prajection of the forward medels
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Are there limits to decoding?
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FIGURE 3 | Overview of the Brain-to-Text system: ECoG broadband phone models, a dictionary and an n-gram language mode!, phrases are
gamma activities (50 ms segments) for every electrode are recorded. decoded using the Viterbi algorithm. The most likely word sequence and
Stacked broadband gamma features are calculated (Signal processing). corresponding phone sequence are calculated and the phone likelihoods
is over time can be calculated by evaluating all Gaussian over time can be displayed. Red marked areas in the phone likelinoods show

A R T | c L E odels for every segment of ECoG features. Using ECoG most likely phone path. See also Supplementary Video.
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Generic decoding of seen and imagined objects . «

Kamitani, fMRI “Our results demonstrate a homology

using hierarchical visual features between human and machine vision and its utility for brain-
based information retrieval.”

Tomoyasu Horikawa! & Yukiyasu Kamitani'2
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