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the brain design

Three design principles

i) Division of labor \R{g
Centers for vision, hearing, smell etc & &,
i) Neural networks of simple computers '

i) Learning — adaptivity -plasticity

AL

But how does this structure represent /
index the world, how does is rank
Importance? etc etc




Lars Kai Hansen, DTU Compute

>

Outline

What is deep structure?
Cognitive components and attention modeling
Ecology of audio signals

Is structure is determined by the environment: Statistics/
physics / mechanisms?

Uniqueness of perception in the brain &
Unigqueness in deep neural networks

\ What about higher order cognition, social cognition? /
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Attention & human optimality S
”... the withdrawal from some things
in order to deal effectively with others”
William James (1890)

. To behave adaptively in a complex world, an
animal must select, from the wealth of information
available to it, the information that is most relevant
at _any point in time. This information is then
evaluated in working memory, where it can be
analyzed in detail, decisions about that information
can be made, and plans for action can be
elaborated. The mechanisms of attention are
responsible for selecting the information that gains
access to working memory.”

Eric 1. Knudsen (2007)
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W. James, The Principles of Psychology, Vol. 1, Dover Publications, 1880/1950.
E.l. Knudsen, “Fundamental Components of Attention,” Annual Review of Neuroscience, vol. 30, no. 1, pp. 57-78, 2007.
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Geep structure needed to predict the future \

Processing in the brain is based on
extremely well-informed / optimized
representations and mechanisms —

A key issue is selective attention...

Fundamental question
What can you attend to?
or...

What is an object / chunk
of information?

\
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Cognitive component analysis
...what we can attend to

B The object / chunk is a key notion in cognitive psychology
— ...number of objects in short time memory, objects "race to short term memory”

Miller, G.A. (1956), The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information.
Psychological Review, 63, 81-97

Bundesen, C., Habekost, T. and Kyllingsbeek, S., 2005. A neural theory of visual attention: bridging cognition and neurophysiology.
Psychological review, 112(2), p.291).

— Miller: *..we are not very definite about what constitutes a chunk of information.*

— A pragmatic definition of an object could be: An object is a signal source
with independent behavior in a given environment (..imagined?)

B Theoretical issues: The relation between supervised and un-supervised learning.
Related to the discussion of the utility of unlabeled examples in supervised learning
and fast/one sample learning...

B Practical Issues: Can we predict which digital media components a user will pay
attention to? -a key challenge for cognitive systems.
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/Cognitive compatibility

Unsupervised Learning Supervised learning

Hidden variable

1

p(s|x,w,) < p(Xx|s,w,)p(s|w,) I

”Cognitive” label, i.e. provided

”Cognitive event”: by a human observer

Data, sound, image,
behavior

How well do these learned
\ representations match: s=y?

\
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B |If "statistical structure” in the
relevant feature space is well
aligned with the label structure
we expect high cognitive
compatibility

B Unsupervised-then-supervised
learning —aka pre-training- can
explain “Iearnlng from one
example”

The Good,

the Bad,
K and the Ugly...

Labels:
Which domains are COCA relevant for? »a»

.

gy
.

W WAN

D> N

A <
v

N

~—

D1

=

I



Lars Kai Hansen, DTU Compute SPLINE 2016

/ Vector space representation \

Abstract representation - can be used for all digital media

A “cognitive event” is represented as a point in a high-dimensional “feature
space” — document similarity ~ spatial proximity in a given metric

Text: Term/keyword histogram, N-grams

Image: Color histogram, texture measures

Video: Object coordinates (tracking), active appearance models

Sound: Spectral coefficients, mel cepstral coefficients, gamma tone filters

Contexts can be identified by their feature associations ( = Latent semantics )

\

S. Deerwester et al. /ndexing by latent semantic analysis.
Journal of the American Society for Information Science, 41(6), 391-407, (1990)
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/The Independent component hypothesis

B Challenge: Presence of multiple agents/contexts
B Need to ”blindly” separate source signals = learn contexts
B ICA, NMF, tensor factorization provides (almost) unique solutions to...
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Linear mixing generative model ICA - “Synthesis” \
simplistic model incorporating sparsity and independence
Component’s Vector of
Space-time matrix “where” “what”
Normal sources | | |

Sparse sources

X(loc,time) = > A(loc, k) s(k, time)

Dense sources

\
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P/rotocol for comparing supervised and \

unsupervised learning

B Use the “unsupervised-then-supervised” scheme to implement
a classifier:

— Train the unsupervised scheme, eg., ICA
— Freeze the ICA representation (A matrix)

— Train a simple (e.g. Naive Bayes) classifier using the features
obtained in unsupervised learning Use

B Compare with supervised classifier
— Error rates of the two systems
— Compare posterior probabilities

\_

\
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/Phoneme classification

Nasal vs oral: "Esprit project ROARS” (Alinat et al., 1993)

Binary classification Error rates: 0.23 (sup.), 0.22 (unsup.)
\ Bitrates: 0.48 (sup.), 0.39 (unsup.) /

N
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Cognitive components of speech

Basic representation: Mel (pecchsond
weigthed cepstral coefficients =
(MFCCs)

Modeling at different time
scales 20 msec — 1000 msec

Phonemes
Gender
Speaker identity

4
component 1111\1111»: W 1tl :
contains a mixture of *s” and

Principal

retains 7% e

SPARSIFIED FEATURES: lz] > 1.7

eatures, a cog

mtl\c u)mponen associated w 1lh rhe VoW el lef wund

Co-worker: Ling Feng
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TRAINING DATA
s v

A00

TEST DATA

Mel weighted
cepstral coeff.
(MFCO)
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[[@a] PHONEME IN 'S’ AND 'F' |
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PHONEME
Lars Kai Hansen, DTU Compute

Error rate comparison

For the given time scales and
thresholds, data locate around y
= X, and the correlation
coefficient p=0.67, p<1.38e-09.

SUPERVISED

04 U2
UNSUPERVISED

SPARSIFIED PHOMEME MFCCS
Sample-to-sample correlation

- Three groups: vowels eh, ow;
fricatives s, z, f, v; and stops k, g, p, t.

— - 25-d MFCCs; EBS to keep 99%
UNSUPERVISED PREDICTION = energy; PCA reduces dimension to 6.
- Two models had a similar pattern of
making correct predictions and
mistakes, and the percentage of
matching between supervised and
unsupervised learning was 91%.
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Longer time scales

Train F1
Test F1
Train F2
- Test F2
Train M1
© Test M1

Latent Dimension 5

5 O 5

oy .
0
S Latent

Latent Dimension 2

Dimension 4

Zoom Into 2D

Tp}
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Latent Dimension 4

Time integrated (1000ms) MFCC’s: text independent speaker recognition....
Feng & Hansen (CIMCA, 2005)
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Error rate correlations

for super/unsupervised
learning for different cognitive
time scales and events

Challenged by degree of

sparsity and time averaging

Gender, ldentity, Heigth etc
are the Audio Gist vars

PHOMEME

II:-_- [ [:1-
UNSUPERVISED

HEIGHT DENTITY

Fig. 4. Figure shows test error rates of both supervised and unsuper-
vised learnin, four topics: phonemes, gender, height and identify.
Solid lines ir y = x in the coordinate systems. All data lo-
cated along this line, meaning high correlation between supervised
and vnsupervised learning,
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Selective cortical representation of attended speaker
in multi-talker speech perception

Nima Mesgarani' & Edward F. Chang'

doi: 10.1038/nature11020

Human brain mechanisms
Attention in speech mixtures

a b Figure 1 | Acoustic and neural reconstructed
oot ———— 8

_ SP1: ready tiger goto green five now SP2: ready ringo goto red two now spectrograms for speech from a single speaker or
S = 8 . = = § p 3 3 . i Max a mixture of speakers. a, b, Example acoustic
qg’_E A 4 2 B s = =1 = : = | waveform and auditory spectrograms of speaker
£ ‘B ’ e %&5‘- = = == & . =co= &~ one (male; a) and speaker two (female;

c ' m d - b). ¢, Waveform and spectrogram of the mixture of

Mix:ready fi nesh ftweo noaw Mix: read m. nesh ﬁm noaw the two shows highly overlapping energy
dy tiggo gmttog y m@@gﬂmg ghly pping energy
? 8 2= . Zhzi-§o.5:4 - SP2 distributions. d, Difference spectrogram highlights
S ¥ : Ppew ""::-??; ‘L ‘s E: " ; - ‘s - the mixture regions where speaker one (blue) or
x - - L E__—-- .

8= — ~= = s 2.. T — 8?1 two (red) has more acoustic energy. e, f, Neural-
01 . - population-based stimulus reconstruction of

e > 8 Single: SP1 f  Single: SP2 y speaker one (e) and speaker two (f) alone shows
5N - : . k ﬁ( similar spectrotemporal features as the original
2= “‘ ‘ . ' . : spectrograms in a and b. g, h, The reconstructed
L 0.1 ' == 0 spectrograms from the same mixture sound when

Mix: attend SP1 h  Mix: attend SP2 attending to either speaker one (g) or two
> g 2 8
% = - . Max (h) highly resemble the single speaker
= T ' — ] reconstructions, shown in e and f, respectively.
2 04 - - 0 i, Overlay of the : g
' . ) maximum energy P value
- 2 .
1 8 Time (s) = SP1 alone spectrograms in ¢ o 10—*:
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Unigueness of representations?

Modern society’s deep
specialization requires efficient
shared representations

You know what | mean - right?

Does machine learning also
develop shared representations
and if so - why?

\_

\
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Universality of attention to digital
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JP Dmochowski, P Sajda, J Dias, LC Parra, "Correlated components of ongoing EEG point to emotionally laden attention

-a possible marker of engagement?" Frontiers of Human Neuroscience, 6:112, 2012.

JP Dmochowski, MA. Bezdek, BP. Abelson, JS. Johnson, EH Schumacher, LC Parra, ”Audience preferences are predicted by
temporal reliability of neural processing”, Nature Communications 5:4567, 2014.

AT Poulsen, S, Kamronn, J Dmochowski, LC Parra, LK, Hansen:. “Measuring engagement in a classroom:

Synchronised neural recordings during a video presentation”. arXiv preprint arXiv:1604.03019 (2016).

=
—
—

I



Lars Kai Hansen, DTU Compute

SPLINE 2016

ﬂNhat is the joint attention signal?

Driven by early visual response
hich is modulated by attention...

Narrative .
Scrambled

= A
3 4

ALD (normalised)

Real-time feasible in (sub)-groups,
correlate with computed saliency...

\

Hiliard et al. Sensory gain control (amplification) as
a mechanism of selective attention
Phil.Trans. R. Soc. Lond. B (1998) 353, 1257~1270
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Optimal representations?

Important for engineering proxies for human information processing...
Cf. efficient coding of “context-to-action” mapping

=
ﬁ
=

I



Lars Kai Hansen, DTU Compute SPLINE 2016

N

Deep networks

-

MLSP Grenoble 2009

\
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Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

Fig. 3. (A) The two-
dimensional codes for 500
digits of each dass produced
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative
viualization, see (8).

REM Encoder
Pretraining Unrolling Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (REMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the “data” for training the next RBM in the stack. After the pretraining, the REMs are
“unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of

Fig. 4. (A) The Fadion of error derivatives.

retrieved documents in the
same class as the queny when
a query document from the
test set is used o retrieve other
test set documents, averaged
over all 402,207 possible que-
ries. (B) The codes produced
by two-dimensional LSA (O
The codes produced by a 2000-
500-250-125-2 autoencoder.

a5
a

Accuracy

1 8 7 i 27 266 511 1028
Number of retrieved documents

dimensionality of data with neural networks." Science 313, no.
5786 (2006): 504-507.
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On the resilience of deep neural networks to weight damage

H OW We I I d ete rm i n ed are Fasmus Jessen Aaskov Lars Kai Hansen

t h tati O n S by Dept ra_."L.-}_r:p.".':;." .-H;_.'r."r:'ni:rrl'c'.f Dept r;."t.-}pp.'.'e';.‘ .'H;:n'l'!'lz'.l’.‘i.'ér.'-:'.f
e re p rese n '.r;'u'.'lr.:.:r::l::.' Er’:rrlr:.l:.‘1:1;,'*::”'..'?1 'I;-.-#JJ;:::-::ru' {':F"r:”rr'“"‘;;l::mm

ecology... sensitivity

analysis

i 1
w8 we
Fandom Metwork
weight persurbation minimam

(8} Error increase versue strength of damage {100 networks).

RJ Aaskov’ LK Hansen “On the resilience of deep {a) Example of a well performing network (20.25% final test emor rate). (b) Example of a network with poor performance (23.71% final test emor

. " . raie).
neural networks to Welght damage' In review (2016) Figare 3. Two exampies of how oar method for estimating loss behaves in different cases In both figures, the averape loss of & repeated damage experiment

amd our estimsted expecied loss 15 shown for esch of the individes) layers. The expecied loss 15 Musirated s a doted lne with distinctive markers for
each layer.
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Published as a conference paper at ICLR 2016

CONVERGENT LEARNING: DO DIFFERENT NEURAL
NETWORKS LEARN THE SAME REPRESENTATIONS?

Yixuan Li'} Jason Yosinski'; Jeff Clune?, Hod Lipson®, & John Hopcroft!

(a)

Figure 1: Correlation matrices for the convl layer. displaye
mum at white. (a,b) Within-net ¢ ation matr
correlation etl vs. Net2. (d) Between-net c ation for Netl vs. a v
een permuted to approximate Netl's fealure ord e partially white diago
this final matrix shows the extent to which the alignment is successlul: see Figure 3 for a plot of Ul
‘lues along this diagonal and further discussion.

o
=
wn

average correlation

0 » semi-matchine

©
=

0.35 matching

L, leyan, J Yos_lnskl, J Clune, H Lipson, J Hopcroft. "Convergent G'E?ctijnvl onv2 —onv3 onva
Learning: Do different neural networks learn the same convolutional layers
representations?." arXiv preprint arXiv:1511.07543 (2015)
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What about “higher order” cognition?

DEEP THOUGHTS (¥
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ﬁdependent contexts
In document databases

e X(J,t) is the occurence of the j'th
word in the t'th document.

 s(k,t) quantifies how much the
k'th context is expressed in t'th
document.

e A(j,k) quantifies the typical

importance of the j'th word in the
k'th context

ICA in text
Isbell and Viola (1999)
Kolenda, Hansen, (2000)

Dhata extraction
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PCA vs ICA document scatterplots
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f | -—
Linear mixture of

Independent agents
In term-document
scatterplots

Linear mixture of independent
contexts observed in short time

IET features (mel-ceptrum) in a
e I music database.
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Social networks:
Linear mixtures of independent communities?

"Movie actor network”
- A collaborative small world

Network 158 000 movies
380.000 actors

©
I—
n
<
o
4
m
©
m

Genre patterns in expert’s opinion on
similar music artists

(AMG400, Courtesy D. Ellis) . -0.05 0 0.05
EIGENCAST 3
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Independent contexts in multi-media

B Organizing webpages
in categories
B Labels obtained from

Yahoo's directory

B Features: Text, color, EL e
and texture subsets of / \
MPEG image features G e olor

3591 192 768

L.K. Hansen, J. Larsen and T. Kolenda “On Independent Component Analysis for Multimedia Signals”.
In L. Guan et al.: Multimedia Image and Video Processing, CRC Press, Ch. 7, pp. 175-199, 2000.

Coworkers: Thomas Kolenda,
Jan Larsen

23
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Performance of the system

trained by associating
unsupervised independent
components with labels —
generalization based on Yahoo
cathegories

Modality

Color

Texture

Texture/Color

Text

Combmed (texture/color/text)

L8
1
5.

Source distributions

Fig. 3. Scatterplots of the text and image multumedia data, pro-

jected to a two-dimensional subspace found by PCA. Grey vs
points corresponds to the three considered, see Fig.

ray like structure strongl 1 ICA interpretation, however,
the relevance of this representation can only be determuned by a
subsequent mspection of the recovered source signals. As we will
see in section 4.6, 1t turns out that there 15 an interesting alignment
of the source signals and a manual labeling of the multimedia doc-
uments.
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Teture (K=13 )

Text (K=d45)

Color (K=16]

B81.5

17.25 14.75

Combined errorrate:

.
T

Single best errorrate: 5.7%

Texture Caolor Text (K=26)

88.25

ht guard
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CASTSEARCH - CONTEXT BASED SPEECH DOCUMENT RETRIEVAL

Fream I-EE“NGN-

Lasse Lohilahti Molgaard, Kasper Winther Jorgensen, and Lars Kai Hansen .
Informatics and Mathematical Modelling canel

Technical University of Denmark Richard Petersens Plads e
Building 321, DK-2800 Kongens Lyngby, Denmark F—

g 32
= -
.

100 150 200
Words

(a) Manual segmentation.

CRISIS NLEEﬁNCN—.I

WAR N IRAT

speach speaker

audta segments f
urns
stream audio speaker

classif segmenta-

HEATWEVE|

CAIME

wFIiiTH cation tion wLoRRER
HURRICANE SEASON I -

Audio analysis ||I II_
OTHER
r ™ 150 20 = 300

Text segments  ——— )

‘Words

(b) p{k|d*) for each context. Black means high probability.

Term-doc
miatry

Context space

CRISIS M LEEANON
WAR N IRAT

HEATWAVE|

Text processing

CRAIME

WILDFRES

Fig. 1. The system setup. The audio stream is first processed using

audio segmentation. Segments are then using an automatic speech e

recognition (ASR) system to produce text segments. The text is ]
Words

then processed using a vector representation of text and apply non- P o i
: Coooe i ) / (¢) The segmentation based on p(k|d* ).
negative matrix factorization (NMF) to find a topic space.

HURFICANE SEAS0M

260

Fig. 3. Figure 3(a) shows the manual segmentation of the news
show into 7 classes. Figure 3(b) shows the distribution p(k|d* )
used to do the actual segmentation shown in figure 3(c). The NMF-
segmentation is in general consistent with the manual segmentation.
Though, the segment that is manually segmented as "crime’ is la-
beled "other” by the NMF-segmentation

Mglgaard et al. 2007
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rch - Windows Internet Explorer

(€1 D= |e_ hittp: ficastsearch.imm.diu.dk fsearch/hame.php j £ |

Fle Edit wew Favorites Took Help

Google |G +"inteligent sound" matiab to v | Start J‘,Eﬁ - | ¥% Bogmarker= 544 blokeret | % kontroller = |« Send i 2 [ inteligent sound [, matlsb »

& CNM Castsearch ‘ ‘

CNN Castsearch

Search: |schwarzeneggar Search

Traditional Text Search Top 3 Topics

30/06/2006 23:00 Play segment Play file Transcription Topic 49 'California Politics " (probability 38.3%)
30/06/2006 14:00 Play segment Play file Transcription Topic Keywords:

26/12/2006 05:00 Flay segment Play file Transcription california, southern, heat, temperatures, dollar, wave,
23/05/2006 10:00 Flay segment Flay file Transcription weather, arnold, deaths, governor
18/11/2006 13:00 Play segment Flay file Transcription Top 3 documents within topic:

15/01/2007 13:00 Play segment Play file Transcription 25/07/2006 12:00 Play segment Play file Transcription
07/06/2006 11:00 Play segment Play file Transcription 28/07/2006 05:00 Flay segment Play file Transcription
07/06/2006 10:00 Flay segment Flay file Transcription 25/06/2006 01:00 Play seament Play file Transcription
31/12/2006 03:00 Play segment Play file Transcription

3041072006 01:00 Play segment Play file Transcription To

To . N
aw ... wcalifornia governor arnold’s fortson

Search by Expanded Query &~

23/05/2006 10:00 Play segment Play file Transcription To aga}: 1 TlSF]e Ct'ed t}-le ca 1 1 fc]rrl la meEX1co

21/06/2006 23:00 Flay segment Play file Transcription 1 border by helicopter wednesday to see ...
22/06/2006 03:00 Play segment Play file Transcription 2
01/06/2006 22:00 Play segment Play file Transcription 1

01/06/2006 13:00 Flay seqment Flay file Transcription e . the past c]_a_y s pres ident bush as kj_nq
3140772006 17:00 Pl it Play file T i ' . —~ R

Fy e FEv e ranenRen california’s governor for fifteen hundred
02/06/2006 02:00 Play segment Play file Transcription
24/06/2006 05100 Flay seqment Flay file Transwiption more national guard troops to help patrel
01/06/2006 23:00 Play segment Play file Transcription t he mex j. Can }:] C]rder bL‘lt q[:]_\rerr“:]r CJ]:"\."i 1 le
01/06/2006 20:00 Play segment Play file Transcription . . .

schwartz wicker denying the request

saying. ..

Fig. 2. Two examples of the retrieved text for a query on "schwarze-
negger’.

castsearch.imm.dtu.dk
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File  Flay

MiIRocket

Dance

Time frequency analysis pipeline:

MFCC’s @ 30 ms windows
Temporal i1ntegration and genre

classification at 1000ms

Music recommendation In 12-D genre
space

kens: WEEN  HHz: IEER

A. Meng, P. Ahrendt, J. Larsen, L.K. Hansen: Temporal Feature Integration for Music Genre Classification. IEEE Transactions on Audio
and Speech and Language Processing 15(5): 1654-1664 (2007)

T. Lehn-Schigler, J. Arenas-Garcia, K.B. Petersen and L.K. Hansen: A Genre Classification Plug-in for Data Collection. Proc. 7th Intl.
Conf. on Music Information Retrieval, ISMIR 2006, pp. 320-321, Victoria, Canada, Oct. (2006).

L.K. Hansen, T. Lehn-Schigler, K.B. Petersen, J. Arenas-Garcia, J. Larsen, and S.H. Jensen: Learning and clean-up in a large music I
database. EUSIPCO 2007, European Conference on Signal Processing, Poznan (2007).
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muzeeker

= MuZecker Searchatop - Windows Intermet Explorer

Wikipedia based common sense

Wikipedia used as a proxy for the
music users mental model

Implementation: Filter retrieval using
Wikipedia’s article/ categories

muzeeker.com

S. Halling, M.K. Sigurdsson, J.E. Larsen, S. Knudsen, L.K. Hansen: MuZeeker: A domain SpecificWikipedia-based Search Engine.
In Proc. First International Workshop on Mobile Multimedia Processing. Tampa, USA (2008).

J.E. Larsen, S. Halling, M. Sigurdsson and L.K. Hansen: MuZeeker - Adapting a music search engine for mobile
phones. To appear in Springer Lecture Notes in Computer Science ‘Mobile Multimedia Processing: Fundamentals,

Methods, and Applications’, Selected papers from First International Workshop on Mobile Multimedia Processing, Tampa, USA.
(2010).
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attention?

\ You're secrets
—~ 4\‘ are safe with
N -"j"_"il me, because

" _chance | was

- _< not listening.

j ,f "—"‘Sthnrn is a good

@ representations are optimal, what abom
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Top down vs bottom up attention

Botto

P

termined by

feature of the input

Cocktail party effect
(Pollack+ Pickett, 57)

Audio

Classical spatial
novelty saliency
(Itti+Koch, 04)

/isual Visual

Top down
Attention determined by

state of the observer

Cocktail party
problem (Cherry, 64)

ambiguous pictures
eye tracki

N

\

See e.g. J.M. Wolfe et al. "How fast can you change your mind? The speed of
Vision Research 44 (2004) 1411-1426

top-down guidance in visual search”
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Visual system hierarchy

3-D Spatial Object
relationships recognition

(Where, where going?) (What?)
[Posterial, parietal] [Inferotemporal]

E:,r-: cal Orientation _ Spatial Velocity  Binocular

3 frequenc Wavelength
analysis [P-1, M) M‘IP_L p.éi ™ d'[:n’?fnﬁlty B3

Retina, LGN

-

=
Q
[
Q
3
5
&=

Spatial

Temporal

frequency
Fig. 3. Convergence and divergence in visual processing. Arrows represent
major lines of information flow from subcortical P and M streams (bottom)
to the selectivities represented among neurons at early stages of cortical

S~— analysis (middle) and from there to two general tasks of vision (top level).
The hatched portion of the M cell curve represents their nonlinear compo- []'I'U
DJ Felleman,DC. Van Essen. "Distributed hierarchical processing in the nent of processing. The processing streams associated with each property in
. the middle row are assigned on the basis of a high incidence of selectivity P
primate cerebral cortex.” Cerebral cortex 1, no. 1 (1991): 1-47. recorded physiologically (6, 7).
’ o
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Realistic Avatar Eye and Head Animation Using a
Neurobiological Model of Visual Attention

L. Itti.” N. Dhavale’ and F. Pighin’

Spatio-Temporal Filfer

Winner-Take-Al —-—-—-/

Inbition of Fefurm
{elisabiad)

Saccade / Blink / Smooth Pursuit Arbitrer
Head / Eya Saceade Spiitter Biink Genarator

“Saccadic * Head Saccadic Eye
Movement Generator _ Movement Generator
- -
Smooth Pursuit Mead Smooth Pursuit Eye
Movement Generator

Ve

Saccadic Suppression  Bifnk Suppression

Realistic Aendering

Itti, Dhavale & Pighin, Proc. SPIE, 2003
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ﬂ/IL model of “optimal” top down attention \

1. The task is implemented as
decision problem

2. Attention is represented as the
choice over set of detailed features

Standard probabilistic
classifier

Model of posterior probability

p(c|x,z)

Two sets of features

1) Features setting the context
'the gist’ (X)
(Friedman,79; Torralba et al., 04)

i) Potential features (z)
considered by the attention

Journal of Experimental Psychology: General 1979;108:316—355.

\A_ Friedman: Framing pictures: the role of knowledge in automatized encoding and memory of gist.

mechanism

=
—
—

I



Lars Kai Hansen, DTU Compute

SPLINE

2016

ﬁ/lathematical model

We are interested
a decision task:

In a partial observation < unde
Choose among ”C” actions

[ vtz
[ ple,x, z)dz
> f(_ L ple,x, z)dz

C »
> [ ezl [[ d=

c=1 i 7£j

> ((:l I (e, 2) [ 1,4, dz

\

r
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/Measure the information gain

First used by Lindley (1956) for experimental design..

ON A MEASURE OF THE INFORMATION PROVIDED BY
AN EXPERIMENT" 2

By D. V. LiNnDLEY
Unaversity of Cambridge and University of Chicago

1. Summary. A measure is introduced of the information provided by an
experiment. The measure is derived from the work of Shannon [10] and involves
the knowledge prior to performing the experiment, expressed through a prior
probability distribution over the parameter space. The measure is used to
compare some pairs of experiments without reference to prior distributions;
this method of comparison is contrasted with the methods discussed by Black-

', Finally, the measure is applied to provide a solution to some problems
ot experimental design, where the object of experimentation is not to reach
decisions but rather to gain knowledge about the world.

=
—
—

D. V. Lindley, “On a measure of the information provided by an
experiment,” Annals Mathematical Statistics, vol. 4, pp. 986—1005, 1956.
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Information theoretical model

C
ASJ(J_}ZJ) - — Z/l{:}gp(r'.z\m)p(r'.zkl:)r/'z
c=1"

C
-+ Z][}gp({f‘m.:j)})(ﬂ‘m.:j)
c=1

= /\Agj(.ﬁ!‘if})j}(lj :l?)r'f:j
/.
— Z/log;)(ff\m. zi)plc, zj|x)dz;
c=1"
C
—Z/logz;p(f-..z!;c);)(r*.z\:rr)riz.
c=1"
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K
ple.x.z) = Y plk)p(c
k=1

/Gaussian—Discrete distribution

k)p(x, z

k)
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Information gain by requesting the j’'th feature

C K

Gi@) = 3N plelkp(kle) x

(_‘,:1 k:l

/ log [p(c, x, z;)| p(z;|x, k)dz;

K .
> p(kle) [ 1og[pl@.2)]p(z e k)
k=1 )

const.
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Isual attention: Binary decision based on GIST / FOCUS

27 image features in total

1-9: GIST....whole image NMF
factors

10-27: Foci: 10x10 patch NMF
factors

N... = 2000

N, = 600
Attention = 28%
Random = 41% (p<0.01)

||1 whuh one u’r I
( . Th

18 addition: 1] NMI— features trz umd on ]“I.. al 10 x 10 patches.
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The Role of Top-Down Attention 1n the Cocktail Party:

Revisiting Cherry’s Experiment after Sixty Years

Letizia Marchegiami* ", Seliz G. Karadogan™, Tobias Andersen®, Jan Larsen® and Lars Kai Hansen**

Weak and Strong Top-Down Attention

p(y|k)P

nNylk) — plylk. ) = =———
Plk) = Ptk ) = S e

\
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IBM, Story 1 IBM, Story 2 Spectral Overlap (~11%)

| (NN W

-

o
n

O DIR Attention Error

0.2} # UNDIR Attention Error b CIBM, Story 1 CIBM, Story 2 Temporal Overlap (50%)
(a) (b) (c)

0.15 . . ) . ) e .
Figure 7.3: The illustrations of temporal and spectral overlap definitions, the bins
represent time-frequency regions of an IBM (frequency bins are not equally spaced,

0.1 gammatone filtering is used). Only black regions represent overlapped parts on (c).

RELATIVE EXCESS ERROR RATE

0.05 0.1 0.15
MIXING FRACTION (f)

UNDIR, TEMP DIR, TEMP

Correlation

218-1410-6-2 2 6 1014182
UNDIR, SPEC

2-18-14-10-6 -2 2 6 1014182
DIR, SPEC

Correlation

%2 18141062 2 6 10141822  22181410-6-2 2 6 1014 1822
LC(dB) LC(dB)

Figure 7.6: Correlation for different LC values, WinLength = 20ms and Num-
Chan=32. Left to right: Undirected and Directed. Top to bottom: Temporal and

Spectral. DIU

o
MLSP Grenoble 2009 >
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Summary

Evidence that cognitive components are the “chunks” of attention

Optimality: Representations are quite uniquely determined by statistical and physical
properties of the environment

Attention a function of sensory representations and the mental state/goal/task of the
beholder

Optimality: A simple information optimizing mechanism can use task information to
determine what to do next and thereby improve decision making

Research supported by Innovation Fund Denmark, Dansh
Research Councils, the Lundbeck Foundation, the Novo
Nordisk Foundation
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Conclusions & outlook

Evidence that phonemes, gender, identity are independent components
'objects’ in the (time stacked) MFCC representation

Evidence that human categorization is based on sparse independent
components in social networks, text, digital media

Conjecture: Objects in digital media can be identified as independent
components: The brain uses old tricks from perception to solve complex
"modern” problems.

=
—
—

I



Lars Kai Hansen, DTU Compute SPLINE 2016

/Acknowledgments \

i

PR~

=
#
=

I



	Sensing the deep structure of signals
	Slide Number 2
	Outline
	Attention & human optimality
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Protocol for comparing supervised and unsupervised learning
	Slide Number 13
	Cognitive components of speech
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Error rate correlations �for super/unsupervised�learning for different cognitive time scales and events ���Challenged by degree of sparsity and time averaging�����Gender, Identity, Heigth etc are the Audio Gist vars
	Slide Number 19
	Uniqueness of representations?
	Universality of attention to digital media 
	Slide Number 22
	Slide Number 23
	Deep networks
	Slide Number 25
	How well determined are the representations by ecology… sensitivity analysis
	Slide Number 27
	What about “higher order” cognition?
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	So representations are optimal, what about attention?
	Slide Number 41
	Slide Number 42
	 Itti, Dhavale & Pighin, Proc. SPIE, 2003 
	 ML model of ”optimal” top down attention
	Mathematical model
	Measure the information gain
	Information theoretical model
	Gaussian-Discrete distribution ��... allows closed form marginalization and conditionals
	����Information gain by requesting the j’th feature
	Visual attention: Binary decision based  on GIST / FOCUS
	Slide Number 51
	Slide Number 52
	Summary
	Conclusions & outlook
	Slide Number 55

