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Missing data

….an important problem in real life applications of 
Machine Learning e.g. 
computational psychiatry

Questions
Impute – can we trust it?
What are the implications of missing data?
The unexpected richness of principal component analysis
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Data Driven Estimation of Imputation Error
—A Strategy for Imputation with a Reject Option

Bak, N. and Hansen, L.K., 2016. 
Data driven estimation of imputation error—a strategy for imputation with a reject option. 
PloS one, 11(10), p.e0164464.
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Missing data in computational psychiatry
- inference based on marginal
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Two subgroups of antipsychotic-naive, first-episode  
schizophrenia patients identified with a Gaussian 

mixture model on cognition and electrophysiology

Bak, N., Ebdrup, B.H., Oranje, B., Fagerlund, B., Jensen, M.H., Düring, S.W., Nielsen, M.Ø., Glenthøj, B.Y. and Hansen, L.K., 2017. 
Two subgroups of antipsychotic-naive, first-episode schizophrenia patients identified with a Gaussian mixture model on cognition and 
electrophysiology. Translational psychiatry, 7(4), p.e1087.
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High dimensions – small samples (D >> N)

”HDLSS” high dimension, low sample size  (Hall 2005, Ahn et al, 2007)
”Large p, small n”  (West, 2003), ”Curse of dimensionality” (Occam, 1350)
”Large underdetermined systems”  (Donoho, 2001)
”Ill-posed data sets” (Kjems, Strother, LKH, 2001) 
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Factor models

Represent a datamatrix by a low-dimensional approximation
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Unsupervised learning: 
Factor analysis generative model
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PCA:

FA:

Source distribution:
PCA: … normal
ICA: … other
IFA: … Gauss. Mixt.
kMeans: .. binary

S known:               GLM
(1-A)-1 sparse:        SEM
S,A positive:           NMF Højen-Sørensen, Winther, Hansen, 

Neural Computation (2002), 
Neurocomputing (2002)
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Matrix factorization:  SVD/PCA, NMF, Clustering
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Modeling the generalizability of SVD

Rich physics literature on ”retarded” learning

Universality
– Generalization for a ”single symmetry

breaking direction” is a function of ratio 
of N/D and signal to noise S

– For subspace models-- a bit more 
complicated -- depends on the 
component SNR’s and eigenvalue
separation

– For a single direction, the mean squared
overlap R2  =<(uT

1*u0)2> is computed
for N,D -> ∞

Hoyle, Rattray: Phys Rev E 75 016101 (2007)
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Variance inflation in PCA
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Restoring the generalizability of SVD

• Now what happens if you are on the slope 
of generalization, i.e., N/D is just beyond 
the transition to retarded learning ?

• The estimated projection is offset, hence, 
future projections will be too small!

• …problem if discriminant is optimized for 
unbalanced classes in the training data!



Lars Kai Hansen
Technical University of Denmark

Variance inflation in PCA

Who shrunk the test set?
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Heuristic: Leave-one-out re-scaling of SVD test projections

Kjems, Hansen, Strother: ”Generalizable SVD for 
Ill-posed data sets” NIPS (2001)

N=72, D=2.5 104
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Re-scaling the component variances by 
leave one out

Possible to compute the new scales by leave-one-out 
doing N SVD’s of size N << D

Kjems, Hansen, Strother: NIPS (2001)
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Approximating LOO (leave-one-out: ”N”)

T.J. Abrahamsen, L.K. Hansen. A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis. 
Journal of Machine Learning Research 12:2027-2044 (2011).
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Two approximations

Adjusting for the mean overlap

Adjusting for lost projection

Hoyle, Rattray: Phys Rev E 75 016101 (2007)
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Universality in PCA, NMF, Kmeans

• Looking for universality by 
simulation
– learning two clusters in 

white noise. 

• Train K=2 component factor 
models. 

• Measure overlap between line 
of sigth and plane spanned by 
the two factors.

Experiment
Variable: N, D
Fixed: SNR
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Factor models for handling missing data

Schafer and Graham (2002): ‘In 
missing data problems the 
sample may have to be larger 
than usual, because missing 
values effectively reduce the 
sample size’.
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Modeling – replica method

Universal learning curves for R2 = <(aT*a0)2>; 
S is signal to noise, 

Proof strategy: 
1) R2 = <(aT*a0)2> is obtained from a generating function ( log Z)
2) Compute average of log Z, via moments using <log Z> = lim n->0 (<Zn>- 1)/n
3) The average <Zn> can be compute as N, D -> ∞, with α=N/D   finite
4) Assume replica symmetry - all <(aj

T*ak) 2> and <(aj
T*a0) 2> all identical
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Modeling – replica method

Universal learning curves for R2 = <(aT*a0)2>; 
S is signal to noise, 

Define effective signal to noise
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Modeling the effect of missing data
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Real world data
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Conclusions

PCA is tricky  
- variance inflation

Missing data can be handled with PPCA
Phase transition is found – similar to PCA learning curve

very accurate model of simulated data, 
& reasonable agreement for real data 

Missing data reduces SNR not samples size
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