Openlng the Black Box

r"c‘?} How to Interpret Machine Learning Functions and Their Decisions




Outline

Why open the black box?

— Trust,debugging, legal, scientific applications

Principles

— Interpretation vs explanation, desiderata from “Explainable Expert Systems”
— ML Function visualizations

Function level visualization - Prediction & reproducibility evaluation
— NPAIRS, PR-curves,

Break

Category: Labrador_retriever
Image

Decision level visualizations
— Methods for deep learning, examples from object recognition

Demonstration
Keras

— Robustness vs methods, networks, training sets
A deep learning library
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Why open the black box? Multiple motivations

Trust
An Al that communicates its decisions is inherently more trustworthy
Debugging
Verification, performance optimization...

Align values - reduce biases, adversarial risks ...

Legal - “right to explanation”
General data protection regulatory May 26, 2018

Scientific applications of machine learning

learning from machine learning solutions, causal mechanisms, why ...
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Explainability - General desiderata oo w.r andvoore, 1. 0. 1993 DTU

Fidelity The explanation must be a reasonable representation of what

the system actually does.

Understandability Involves multiple usability factors including
terminology, user competencies, levels of abstraction and interactivity.

Uncertainty!

Sufficiency Should be able to explain function and terminology and

be detailed enough to justify decision. XPLAIN

} i i The MYCIN Architecture
Low Construction overhead The explanation should not dominate
the cost of designing the Al.

Efficiency: The explanation system should not slow down the Al
significantly. S ‘

Swartout, W. R. and Moore, J. D. 1993. Explanation in second generation expert systems. In Second generation expert systems, pages 543-585. Springer.
Shortliffe, E.H. et al., 1975. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Computers
and biomedical research, 8(4), pp.303-320. (antibiotics administration)

Swartout, W.R., 1983. Xplain: A system for creating and explaining expert consulting programs (No. ISI/RS-83-4). (digitalis therapy heart issues)




Communicating uncertainty improves group inference
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“To come to an optimal joint decision, individuals must share
information with each other and, importantly, weigh that
information by its reliability...”
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communication of internal uncertainty helps: “dyad benefit”

Bahrami B, Olsen K, Latham PE, Roepstorff A, Rees G, Frith CD. Optimally interacting minds. Science. 2010 Aug 27;329(5995):1081-5.
Navajas, J., Niella, T., Garbulsky, G., Bahrami, B. and Sigman, M., 2017. Deliberation increases the wisdom of crowds. arXiv preprint arXiv:1703.00045




Explanation vs interpretability in recent literature
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Turner (2016)
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— Explanation= single decisions. Interpretability = understanding the mechanism

Guidotti et al. (2018)

— “Which are the real problems requiring interpretable models and explainable predictions?”

Doshi-Velez and Kim (2017)

“Interpret means to explain or to present in understandable terms. In the context of ML systems, we define
interpretability as the ability to explain or to present in understandable terms to a human.”

“We argue that the need for interpretability stems from an incompleteness in the problem formalization,
creating a fundamental barrier to optimization and evaluation.”

Gilpin et al. (2018)

“...interpretability, loosely defined as the science of comprehending what a model did”
“While interpetability is a substantial first step, these mechanisms need to also be complete, with the capacity to
defend their actions, provide relevant responses to questions, and be audited. Although interpretability and

explainability have been used interchangeably, we argue there are important reasons to distinguish between
them.”

“Explainable models are interpretable by default, but the reverse is not always true”.

R Turner, 2016, September. A model explanation system. In Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International Workshop on (pp. 1-6). IEEE.
R Guidotti et al, 2018. A survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 51(5), p.93.

Doshi-Velez, F. and Kim, B., 2017. Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.

Gilpin et al., 2018. Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning. arXiv preprint arXiv:1806.00069.

19.09.2018 | DTU Compute, Technical University of Denmark
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How reliable are human explanations?

i

Failure to Detect Mismatches
Between Intention and Outcome
in a Simple Decision Task

Petter Johansson,' Lars Hall,"*+ Sverker Sikstrém,
Andreas Olsson?

1

“Even when they were given unlimited time to deliberate upon their choice no more than
30% of all manipulated trials were detected.

But not only were the participants often blind to the manipulation of their choices, they also
offered introspectively derived reasons for preferring the alternative they were given instead.

In addition to this, manipulated and non-manipulated reports were compared on a number of
different dimensions, such as the level of emotionality, specificity and certainty expressed, but no
substantial differences were found”

Johansson, P., Hall, L., Sikstrém, S. and Olsson, A., 2005. Failure to detect mismatches between intention and outcome in a simple decision task. Science, 310(5745), pp.116-119.
Johansson, P., Hall, L., Sikstrém, S., 2008. From change blindness to choice blindness. Psychologia, 51(2), pp.142-155.



Opening the black box - mapping ML functions
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» A significant objective in scientific applications
* Legal requirement — minimal explanation? (Floridi et al.)

The GDPR states that data controllers must notify consumers how their data will be used,
including "the existence of automated decision-making, and, at least in those cases, meaningful
information about the logic involved, as well as the significance and the envisaged
consequences of such processing for the data subject.*

https://gdpr-info.eu/art-15-gdpr/

» Saliency maps

— Saliency defined in Le Cun et al. (1990) for network pruning, can be used to inputs as well —the
estimated cost of removing input ~ %; H; w?

e Sensitivity maps
— Zuradaet al. (1994) — < (d log(p) / dx )2> (average over data)

Goodman, B. and Flaxman, S., 2016. European Union regulations on algorithmic decision-making and a" right to explanation™. arXiv preprint arXiv:1606.08813.
Wachter, S., Mittelstadt, B. and Floridi, L., 2017. Why a right to explanation of automated decision-making does not exist in the general data protection regulation.
International Data Privacy Law, 7(2), pp.76-99.

LeCun, Y., Denker, J.S. and Solla, S.A., 1990. Optimal brain damage. In Advances in neural information processing systems (pp. 598-605).

Zurada, J.M., Malinowski, A. and Cloete, |., 1994, June. Sensitivity analysis for minimization of input data dimension for feedforward neural network. In Circuits and
8 | 19.09.20 Systems, 1994. ISCAS'94., 1994 IEEE International Symposium on (Vol. 6, pp. 447-450). |EEE.




Saliency map for a neural network for decoding PET brain scans (1994-95) DTU
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Lautrup, B, Hansen, LK, Law, I., Mgrch, N, Svarer, C, Strother, S Massive weight sharing: a cure for extremely ill-posed problems.

In Workshop on supercomputing in brain research: From tomography to neural networks. 137-144 (1994).

Megrch N, Kjems U, Hansen LK, Svarer C, Law I, Lautrup B, Strother S: Visualization of Neural Networks Using Saliency Maps.

In Proc. 1995 IEEE International Conference on Neural Networks, Perth, Australia, (2):2085-2090 (1995).




Dermatologist-level classification of skin cancer with deep neural networks

Letter  Published: 25 January 2017

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

Dermatologist-level classification of skin
cancer with deep neural networks
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/@ Amelanotic melanoma —B-® 92% malignant melanocytic lesion
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best match worst match

convl

Published as a conference paper at ICLR 2016
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CONVERGENT LEARNING: DO DIFFERENT NEURAL
NETWORKS LEARN THE SAME REPRESENTATIONS?
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Figure 1: Correlation matrices for the convl layer, displayed as images with minimum value at black

and maximum at white. (a,b) Within-net correlation matrices for Netl and Net2, respectively. (¢)
Between-net correlation for Netl vs. Net2. (d) Between-net correlation for Netl vs. a version of
Met2 that has been permuted to approximate Netl’s feature order. The partially white diagonal of
this final maitrix shows the extent to which the alignment is successful: see Figure 3 for a plot of the
values along this diagonal and further discussion.

L, Yixuan, J Yosinski, J Clune, H Lipson, J Hopcroft. "Convergent Learning: Do different neural networks learn the same representations?." arXiv preprint arXiv:1511.07543 (2015)




NPAIRS: Reproducibility of parameters
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Detection of Skin Cancer by Classification of Raman Spectra

Fig. 1.

Raman units

Examples of the NIR-FT Raman spectra of benign and malignant skin
lesions and tumors: BCC, MM, NV, and SK.
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Fig. 10. Sensitivity maps for the MM class. Dashed line indicates 95%
confidence interval. Sensitivity map seems more noisy than the BCC sensitivity
map in Fig. 9. Region marked A represents the C'H ™ vibrations in the lipids
and proteins around 2940 em—! and region marked C reflects the amide T band
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Sigurdsson, S., Philipsen, P.A., Hansen, L.K., Larsen, J., Gniadecka, M. and Wulf, H.C., 2004. Detection of skin cancer by classification of Raman
spectra. IEEE transactions on biomedical engineering, 51(10), pp.1784-1793.




EEG mind reading

Mapping time-frequency response
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Figure 3.1: Before falling asleep subjects had to classify a word presented to
them through headphones every & to 9 szeconds as either animals or objects.
This task allowed the mapping of each specific category with a specific motar
response. This induction of a category-response mapping just before the onset
of sleep iz believed to promote the maintenance the task-set even after the
sleep onset. Testing conditions encouraged the transition towards sleep while
remaining engaged with the same task-set. For each subject one of two lists of
words was presented during wakefulness and the other list during sleep ensuring
actual abstract categorization rather than simple stimulus-response associations.
[Source: Sid Kouider)

(a) Group average of scaled spectra-histo-grams.
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(b)) Z-score.
Christian V Karsten (2012) Pattern Recognition in Electric Brain Signals
- mind reading in the sleeping brain w./ Sid Kouider Paris. MSc Thesis DTU Informatics.

DTU
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BOLD - functional MRI

Indirect measure of neural activity -
hemodynamics

A cloudy window to the human brain

Challenges:
— Signals are multi-dimensional
mixtures
— No simple relation between
measures and brain state -”what is
signal and what is noise”?

TR = 333 ms

M



Independent components — “disentanglement”

deconstruct signal in space x time components

2
|
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ML&

Time Frequency

McKeown, Hansen, Sejnowski, Curr. Op. in Neurobiology (2003)
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Main message: Models should be predictive and informative [Tl

BOLD fMRI: Is hemodynamic de-convolution feasible? =
: —
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LETTER [ icated by Karl Friston & \
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Bayesian Model Comparison in Nonlinear BOLD fMRI LA |'I :
Hemodynamics

LS N
Daniel J. Jacobsen L - - - =
djftdecision3.com T jaancn]
Lars Kai Hansen
Ikhadinen.dtu.dk
Intelligent Signal Processing, Informatics and Mathematical Modeling,

Techmical Unstoersity of Dermmsark, Lynsba, N/A 2800, Denmrk Balloon model: Non-linear relations between stimulus and
Kristoffer Hougaard Madsen physiology — described by four non-linear differential eqs.

Elrenetinemr.dtu.dk

Intelligent Signal Processing, Informatics and Mathematical Modeling,
Tiwfrvadead Usrivversaitu of Desonark . Dowolne. NAA 28000 Dsrnrark

Neural Computation 20, 738-755 (2008)
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Figure 3.1: Overview diagram of hemodynamic models,



BOLD hemodynamics: Resampling-Bayes model selection

Model A: Sustained neural input vs Model B: Fading input

A ’ B ﬁ#’

Figure 3: Regions of interest, marked with white squares. (A) Data set 1; T2*
weighted image slice parallel to the calcarine sulcus. (B) Data set 2; MPRAGE
(magnetization prepared rapid gradient echo) horizontal slice.
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Figure 4 Prediction of data set 1. (A) Model A. (B) Model B. Note that the
confidence interval is an empirical confidence interval for the mean prediction,
based on the MCMC samples.
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Reproducibility of parameters/visualization?
...hints from asymptotic theory

Asymptotic theory investigates the sampling fluctuations in the limit N -> oo

Cross-validation good news: The ensemble average predictor is equivalent to training on all data
(Hansen & Larsen, 1996)

Simple asymptotics for parametric and semi-parametric models

(Some results available also for non-parametric e.g. kernel machines)

In general: Asymptotic predictive performance has bias and variance components, there is
proportionality between parameter fluctuation and the variance component...

Advances in Cs i 1 ics 5{1996)269-280 269

Linear unlearning for cross-validation

Lars Kai Hansen and Jan Larsen

NNNNN oor. Electronics Instiiute B349, Technical University af Denmark, DK-2800 Lyngby, Denmark
E-mail: Ikhansen,jlarsen@ei.diu.dk
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The sensitivity map

Neurolmage 15, 772786 (2002) .
clol: 10, 1006/mimg. 2001, 1033, avallable online at hutpdiwww.idealibrary.com on TDE L

The Quantitative Evaluation of Functional Neuroimaging Experiments:
Mutual Information Learning Curves

U Kjems,* ' L. K. Hansen,* J. Anderson, i S. Frutiger.1'§ S. Muley.§
J. Sidris,§ D. Rottenberg, 1§ and 5. C. Strother
*Dreparcment of Mathematical Modelling, Technical University of Dermmark. P 2800 Lyngby, Denmark: Y Radfelogy Department.
SNenralogy Depactment. and ¥ Biomedical Engioneering. Untversioy of Ainnesora, Minneapolis, AMinnesora 55455;
and YPET Imaging Center. VA Medfcal Center. Minneapolis. Minnesota 55417
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FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/noise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set: Setup 1, Table 1) corresponding to the dashed
solid line in Fig., 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

The sensitivity map measures the impact of a specific feature/location on the predictive

distribution

Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers. 1999 Mar 26;10(3):61-74.

Rasmussen, P. M., Madsen, K. H., Lund, T. E., Hansen, L. K. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. Neurolmage, 55(3):1120-1131 (2011).



‘SVM mind reading’

Neurolmage 55 (2011) 1120-1131

Contents lists available at ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

Peter Mondrup Rasmussen abe Kristoffer Hougaard Madsen ¢, Torben Ellegaard Lund b Lars Kai Hansen %

Non-linear kernel machines, SVM

Local voting +/-
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Does denoising help fMRI1 decoding?
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PM Rasmussen, TJ Abrahamsen, KH Madsen, LK Hansen: Nonlinear denoising and analysis of neuroimages with kernel principal
component analysis and pre-imageestimation, Neurolmage 60(3):1807-1818 (2012).



Initial dip data: Visual stimulus (TR 0.33s)
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Gaussian kernel, sparse kernel regression TRAIN ERR RATE: 0.025 TEST ERR RATE: 0,030
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Error rates about 0.03

How to set

— Kernel width?

Ktest

— Sparsity?
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Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers. 1999 Mar
26;10(3):61-74.

Rasmussen, P. M., Madsen, K. H., Lund, T. E., Hansen, L. K. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. Neurolmage,
55(3):1120-1131 (2011).
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Initial dip data: Visual stimulus (TR 0.33s)

Select hyperparameters of kernel machine using NPAIRS resampling

— Degree of sparsity
— Kernel scale parameter
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Sensitivity maps for non-linear kernel regression

0 20 40 60 80
TIME

100

Fig., 1. XOR-nnage set define by four activated regions (A DB.C.D). Initially we let
regions (ADB.IDY) be activated by random sequence taking values 1. as shown in
example in the bottom pancel (Mall curve). The target signal, also taking values

Lo

1

while in the resting condition, they :

prrl, and is also indicated in the bottom panel (dashed line). The ¢
activated with an XOR-sequence relative to (A) and £, s0 that €7,

the active state the two regions (AC) are randomly, bt

s random. but opposite

won (C) is

= An*tn, hence,
wlentically activated,

SEMSTIATY MAR, SEARITY = 02 e

SERSITIITY AR, SPARSITY = 0.5 RO

TRUE Map
& on
o8
an
o4
' 02
m =
E T —] an 0o
st dlefine by four activated regions, Similar to fig

ror sigenin]-to-moise ratice is S AT = 0]

=
—
=

i



Non-li nearity in TMRI1? Visual stimulus ”XOR”: half checker board no/left/right/both
DTU
>
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Figure 1: PCA analysis of the fMRI data set. An example of the three first PCs estimated
from the training set in a NPAIRS split. The scatter plots show both training (filled
markers) and test examples projected onto the PCs. The blue and red voxels on the
brain slices corresponds to negative and positive PC loadings respectively. The maps are
thresholded to show the 5 upper positive and negative percentiles.

PM Rasmussen, KH Madsen, TE Lund, LK Hansen. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps. Neurolmage, 55(3):1120-1131 (2011).



Non-linearity in fMRI1 — detecting networks

PM Rasmussen et al. Neurolmage 55 (2011) 1120-
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kernel is wide ... i.e.
similar to linear kernel
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Consistency across models (left-right finger tapping)
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Figure 7: fMREI fingertapping experiment - consensus analysis. The plots show the extend
of consensus in the average rSPI among the three models. The rSP1 for LogRes was scaled
by its maxinmm value. Hereafter the rSPIs from the 8V A and RVA were transformed to
match the histogram of that of LogReg. Clorrelation coefficients betwesn histograms are
found on top of the plots.

Rasmussen, P. M., Hansen, L. K., Madsen, K. H., Churchill, N. W., & Strother, S. C. (2012). Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recognition, 45(6),

2085-2100.



Conclusions

Do not multiply causes!

Scientific applications of machine learning have two equally important aims
— Generalizability

— Reproducible interpretation

We can visualize general ML functions with perturbation based methods (saliency maps, sensitivity maps etc)
NPAIRS split-half based framework for optimization of generalizability and robustness of visualizations

More complex mechanisms may be revealed with non-linear detectors - can still be visualized...
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