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Conventional EEG system

Discreet, unobtrusive and user-
friendly assistive devices for
everyday life

Wearable EEG system

Ear-EEG/Hyposafe device

High-performance research
and clinical EEG system

Smartphone data
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How did you sleep last night? | ...
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..we have only limited quantitative self insight...
hard to explain your “state” to services, psychiatrists,
caretakers etc
My working hypothesis: In the wild brain scanning has
the potential to help us infer brain states, plans and
wishes, and in this way improve services, diagnosis,
_ medication, and rehabilitation
Lars Kai Hansen

Technical University of Denmark

=
—
=

i



OUTLINE @

Modulation of Visual Responses
by Behavioral State in Mouse Visual Cortex

Why sampling in the wild?
A science of the individual - new research questions..
‘cognition is action’ (Engell et al, 2013)

‘Most neurons showed more than a doubling of visually evoked firing
rate as the animal transitioned from standing still to running..

(Niell, Stryker, 2010)
Our current EEG in the wild tools:
Imaging with the smartphone brain scanner (SBS )
EarEEG non-invasive, discreete
Hyposafe's subcutaneous eletrode device

Example SBS: engagement in the classroom
Example EarEEG: the scalp to ear link
Example Hyposafe device: 40+ days sampling in the wild

Engel, Andreas K., et al. "Where's the action? The pragmatic turn in cognitive science." Trends in cognitive sciences 17.5 (2013): 202-209.
Lars Kai Hansen
Technical University of Denmark

Niell, Cristopher M., and Michael P. Stryker. "Modulation of visual responses by behavioral state in mouse visual cortex." Neuron 65.4 (2010): 472-479.
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https://www.youtube.com/watch?v=i_66KAOzXhU

Why brain state decoding? Services ...

“Oticon Tego /s directed by the DecisionMaker system, driven by (Al)
Artificial Intelligence that processes sound intelligently. This super
aavanced form of computer processing. Artificial Intelligence is the
process of performing logical operations enthused by the human brain.

The difference between Al-based and conventional instruments Is
distinct: Al-based instruments constantly adapt to particular situation
where conventional instruments provide only a fixed response to
selected types of sounds. Al-based, Oticon Tego evaluates the Wh b .
different sound processing options and selects the one guarantefd to at if this Was
give the clearest sound quality. based on br. ain

State?? €.9., attention

Just like the brain, OticonTego filters out the noise so
concentrate on the speech you like to hear. T sierTviaker system
evaluates and decides exactly when 0 apply the various
features to get the best speech understanding and sound quality in
any situation. All the processing happens automatically, so you need
not lift a finger at all! Completely hands-free Oticon Tego is an ideal
hearing solution for the active you!”

http://www.hearingaids123.com/oticon-tego

Lars Kai Hansen
Technical University of Denmark
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Why brain state decoding?

To make up for cognitive biases

Human senses & brains are
not optimal from a behavioral
point of view...

..e.g. the list of
cognitive biases in Wikipedia

Lars Kai Hansen
Technical University of Denmark

Ambiguity
effect

Anchaoring or
focalism

Attentional bias

Availability
heuristic

Availability
cascade

Backfire effect

Bandwagon
effect

Base rate
fallacy or base
rate neglect

Belief bias

Bias blind spot

Cheerleader
effect

The tendency to avoid options for which missing information makes the
probability seem "unknown. "l

The tendency to rely too heavily, or "anchor,” on one trait or piece of
information when making decisions (usually the first piece of information
that we acquire on that subject)ll10]

The tendency of our perception to be affected by our recurring thoughts [1]

The tendency to overestimate the likelihood of events with greater
"availability" in memory, which can be influenced by how recent the

memories are or how unusual or emotionally charged they may be.['2]

A self-reinforcing process in which a collective belief gains more and more
plausibility through its increasing repetition in public discourse (or "repeat
something long enough and it will become trug").[']

When people react to disconfirming evidence by strengthening their
beliefs [14]

The tendency to do (or believe) things because many other people do (or
believe) the same. Related to groupthink and herd behavior [15]

The tendency to ignore base rate information (generic, general information)
and focus on specific information (information only pertaining to a certain
case) [16]

An effect where someone's evaluation of the logical strength of an argument

is biased by the believability of the conclusion ['7]

The tendency to see oneself as less biased than other people, or to be able
to identify more cognitive biases in others than in oneself [6]

The tendency for people to appear more attractive in a group than in
isolation.[19]

http://en.wikipedia.org/wiki/List_of _cognitive_biases
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What can be decoded - Stereotypical behaviors?

“When we look at living creatures from an outward point of view, one of
the first things that strike us is that they are bundles of habits.”

“In wild animals, the usual round of aaily behavior seems a
necessity implanted at birth,; in animals domesticated, and
especially in man, it seems, to a great extent, to be the
result of education. The habits to which there is an innate
tendency are called instincts;, some of those due to
education would by most persons be called acts of reason. “

“It thus appears that habit covers a very large part of life, and that one
engaged in stuadying the objective manifestations of mind is bound at
the very outset to define clearly just what its limits are.”

) William James, The Principles of Psychology (1890)
Lars Kai Hansen CHAPTER IV “Habit”

Technical University of Denmark
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Limits of Predictability in

Human Mobility

Chaoming Song,*? Zehui Qu,™** Nicholas Blumm,™? Albert-Laszlé Barabasi**

Lars
Techr
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I corresponds to a mobile phone tower, and each time a user
oL 8 makes a call, the closest tower that routes the call is recorded,
| ol pinpointing the user's approximate location. The gray lines
—~ 10°L -, = represent the Voronoi lattice, approximating each tower’s area
&'f L - T ¢ of reception. The colored lines represent the recorded move-
w0k “ , ment of the user between the towers. (B) Mobility networks
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o w10 f(‘io 100 10 ' ' ' ‘ R ©  the vicinity of the respective tower, and the widths of line edges

are proportional to the frequency of the observed direct move-

ment between two towers. (C) A week-long call pattern that captures the time-dependent location of the user with N = 22. Each vertical line
corresponds to a call, and its color matches the tower from where the call was placed. This sequence of locations serves as the basis of our mobility
prediction. (D) The distribution of the time intervals between consecutive calls, t, across the whole user population, documenting the nature of the call
pattern as coming in bursts (11). (E) The distribution of the fraction of unknown locations, g, representing the hourly intervals when the user did not make a
call, and thus his or her location remains unknown to us.
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Short time predictability @ DTU (N=14)

B.S. Jensen, J.E. Larsen, K. Jensen, J. Larsen, L.K. Hansen: Estimating Human Predictability From Mobile Sensor Data
In Proc. IEEE International Workshop on Machine Learning for Signal Processing MLSP (2010).
B.S. Jensen, J.E. Larsen, K. Jensen, J. Larsen, L.K. Hansen: Predictability of mobile phone associations.
In Proc. 21st European Conference on Machine Learning, Mining Ubiquitous and Social Environments Workshop. Barcelona, Spain (2010).

Basic data collection with the "Context Logger” tool (Nokia N95).

Sensor Sampling |Data

Accelerometer |30/minute |3D Accelerometer values

GSM 1/minute |CellID of GSM base transceiver station

GPS 2-3/hour |Longitude, Latitude, and Altitude

Bluetooth 20-40/hour|Bluetooth MAC, friendly name, and device type
WLAN 1/minute |Access Point MAC address, SSID, and RX level
Phone activity|Event Phone number and direction of call or message

Table 1. List of embedded mobile phone sensors used for collecting data

The experiment started October 28, 2008 and ended January 7, 2009.

Participants were students and staff members from The Technical University of Denmark volunteering to be part
of the experiment. Thus mainly situated in the greater Copenhagen area, Denmark.

N= 14 participants took part in the experiment between 31 to 71 days, resulting in approximately 472 days of
data covering data collection periods totalling 676 days. The average duration was 48.2 days.

Technical University of Denmark
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Predictability vs time scale
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Fig. 5. Predictive Information (normalized) vs. window length (log scale). Participant
3 1s left out.

Lars Kai Hansen
Technical University of Denmark
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24/°7 Neurotechnology - Aim:
Connect cognitive neuroscience and normal behaviors

Conventional EEG system

Discreet, unobtrusive and user-
friendly assistive devices for
everyday life

Ear-EEG/Hyposafe device

High-performance research
and clinical EEG system

Smartphone data

Brain state representations connected by machine learning

Lars Kai Hansen
Technical University of Denmark
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DTU mobility projects

Social EEG-
-Leaders and followers
-Joint attention Ivana
Konvalinka
Simon
Mobile real-time EEG Imaging Kamronn
Andreas Trier
-Neurofeedback Poulsen

-Digital media & emotion
-Bhutan Epilepsy Project

Camilla Falk

Farrah J. Mateen, Massachusetts General Hospital

Lars Kai Hansen
Technical University of Denmark
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Machine learning to decode personal states

Aims to extract the mutual information between
personal state and quantifiable behavior

e Personal state: Macroscopic variables, tags,

behavioral categories ... (1) I SﬁEKFﬁSD
 Sensed behaviors: Micro/meso-scopic 10IDO; I\ = T
data/variables ... x(t) THENIITES

WORTH
DOING:

e Mutual information is captured in the
joint distribution ... p(x,s).

Supervised machine learning methods assume s(t)
or parts of s(t) known . unsupervised methods

and builds predictive models of the relation

=
=
=

Lars Kai Hansen
Technical University of Denmark
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24/7 Neurotech — the devices

mental state
monitor

’ -
Ear-EEG device frd- 0(',\”‘" A

Lars Kai Hansen
Technical University of Denmark

-\"I-

Location
information

Hyposafe
subcutaneous
device
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Stefan Debener’s mobile EEG devices

Maarten De Vos, Oxford +
Neuropsychology at the University of Oldenburg,

Towards a truly mobile auditory brain—-computer interface: Exploring the
P300 to take away

Maarten De Vos *<* Katharina Gandras @ Stefan Debener 2P

Lars Kai Hansen
Technical University of Denmark

EYES OPEN

EYES CLOSED

Stefan Debener, Maarten De Vos,
Neuropsychology at the University of Oldenburg,
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Smartphone Brain Scanner

Based on the Emotiv wireless transmission mechanism

W/ the EPOC head Set or mOdIerd Easyca.ps (Stefan Debener, Oldenburg)

Version SBS2.0 for generic Android platforms

(Tested in Galaxy Note, Nexus 7,...)

https://github.com/SmartphoneBrainScanner
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Fig. 5. Electrode locations for two mobile 16 channel EEG setups; the Emotiv neuroheadset
using saline sensors positioned laterally (left), versus a standard gel-based Easycap EEG
montage including central and midline positions (right ).

( A. Stopczynski, C. Stahlhut, M.K. Petersen, J.E. Larsen, C.F. Jensen, M.G. Ivanova, T.S. Andersen, L.K. Hansen.
Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeed-back. International Journal of

. Psychophysiology, (2014).
A. Stopczynski, C. Stahlhut, J.E. Larsen, M.K. Petersen, L.K. Hansen.

The Smartphone Brain Scanner: A Portable Real-Time Neuroimaging System. PloS one 9 (2), e86733, (2014)
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SBS2 functions current (
Exp OGlnhnI observatory

on digital society

Real time system

— Bayesian minimum norm 3D reconstruction with a variety of
forward models (N=1024).

— Adaptive SNR model (B,a) estimated every 10 sec.

— Update speed — 40 fps (Emotiv sample rate 128Hz, blocks of 8
samples)

— Selected frequency band option
— Spatial averaging in "named” AAL regions
Mobile experiment set-ups, so far...
— Common spatial pattern- BCI
— Stimulus presentation options: video, image,text, audio
— Neuro-feedback %

Lars Kai Hansen
Technical University of Denmark



EEG imaging

Linear ill-posed

S Data acquisition
: 4 Sensor positions

iInverse problem Preprocessing 3D source localization
ol . * Segmentation (create mesh)
* Downsampling
X: NXT el « Co-registration
- * Artefact detection (continuous/epochs) == -
Y: KXT * Bad channels / trials « Forward computation
A KxN = Eye, muscles ?

* Baseline correction

: . ; * Inverse estimation
* Averaging / multiway analysis

N >> K l l

Need priors to
- *~ w _ Inverse problem _ -
solve! S —e -

C. Stahlhut: Functional Brain Imaging by EEG: A Window to the Human Mind. PhD-Thesis (2011), DTU Informatics



Why 3D real-time imaging?

Enable on-line visual quality

control :

Neurofeed applications can be ;

based on activity in specific y
brain structures /networks N
Context priors may relate to 3D
location (from meta analysis) )

8 6 4 2 o 2 4 L] B

Fig. 3. Distribufion of memaory and pain brain activations in the posterior cingulate cortex shown on a sagittal plot p is fhe AP axiz with posterior 3 negative.
The blue outline follows that of fhe Talairach stlas, The gray outline iz an isocurvature ina probahility velume for posterior cingulate coriex based on modeling
of coprdinates from the Brede datshase. Green squares are associated with “memory™ aticles and red triangles with “pain” anicles.

Evidence that BCI /decoding
can be improved by 3D
representation

Finn Arup Nielsen, Daniela Balslev, Lars Kai Hansen, "Mining the Posterior Cingulate:
Segregation between memory and pain components”. Neurolmage, 27(3):520-532,
(2005)

Trujillo-Barreto, Nelson J., Eduardo Aubert-Vazquez, and Pedro A. Valdés-Sosa.

. i . "Bayesian model averaging in EEG/MEG imaging." Neurolmage 21, no. 4 (2004):
Technical University of Denmark 1300-1319

Lars Kai Hansen



Source representation can improve decoding

Besserve et al. (2011)

. reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level
approach in terms of information transfer and also reduces redundancy between coherence and power
features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients
reflect the most informative features of network activity, showing an important contribution of localized
motor and sensory brain areas, and of coherence between areas up to 6 cm distance.

Ahn et al. (2012)
... source imaging may enable noise filtering, and in so doing, make some invisible discriminative information
in the sensor space visible in the source space.

a Influence of variable selection b Influence of dipole number
12 T R 50
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Fig. 6. Effect of redudng the number of sources or variables, for power +coherence quantification at the source level a) Average ITR as a function of the number of variables for two
variable ranking techniques: univariate ranking with a Student's t-test and multivariate ranking with the coeffident of a SVM classifier. The ITR values using a sparse number of
variables with the AROM classifier (see text) and all variables with an SVM are plotted for comparison. b) Influence of the number of cortical dipoles used in the forward model on the
ITR: percentage improvement of ITR with respect to electrode level quantification, for each type of couples of tasks { motor, non-motor and mixed couples).

Congedo, Marco, Fabien Lotte, and Anatole Lécuyer. "Classification of movement intention by spatially filtered electromagnetic inverse solutions." Physics in Medicine and Biology
51, no. 8 (2006): 1971

M Besserve, J Martinerie, L Garnero "Improving quantification of functional networks with eeg inverse problem:

Evidence from a decoding point of view." Neurolmage 55.4 (2011): 1536-1547.

Minkyu Ahn, Jun Hee Hong, Sung Chan Jun: "Feasibility of approaches combining sensor and source features in brain—computer

interface." Journal of Neuroscience Methods 204 (2012): 168-178.

Edelman, Bradley J., Bryan Baxter, and Bin He. "EEG Source Imaging Enhances the Decoding of Complex Right-Hand Motor Imagery Tasks." Biomedical Engineering, I1EEE
Transactions on 63.1 (2016): 4-14.



Do we get meaningful 3D reconstructions?

Class: RIGHT

or Imagined finger tapping
Left or right cued (at t=0)

Signal collected from an
AAL region (n=80)

-2+

Normalized Power

Meier, Jeffrey D., Tyson N. Aflalo, Sabine Kastner, and Michael SA Graziano. Complex organization of human primary motor cortex: a high-resolution fMRI
study.Journal of neurophysiology 100(4) :800-1812 (2008).

A. Stopczynski, C. Stahlhut, M.K. Petersen, J.E. Larsen, C.F. Jensen, M.G. lvanova, T.S. Andersen, L.K. Hansen. Smartphones as pocketable labs: Visions for
mobile brain imaging and neurofeedback. International Journal of Psychophysiology, (2014).

A. Stopczynski, C. Stahlhut, J.E. Larsen, M.K. Petersen, L.K. Hansen. The Smartphone Brain Scanner: A Portable

Poal-Timae Nerirnimaninn Sverfarm Plo< nne O (2) eQR722 (201A4)



Imaging engagement in the classroom
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JP. Dmochowski et al, "Correlated components of ongoing EEG point to emotionally laden attention

- apossible marker of engagement?" Frontiers of Human Neuroscience, 6:112, April 2012.

JP. Dmochowski et al, "Audience preferences are predicted by temporal reliability of neural processing”,

Nature Communications 5: 4567, July 2014.

AP Poulsen et al. "Measuring engagement in a classroom: Synchronised neural recordings during a video presentation."
arXiv preprint arXiv:1604.03019 (2016).
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Neurotech for 24/7 brain state monitoring: EarEEG

Aim:

A discreete, non-invasive solution for long time
recording in the wild

Status (a) An earplug with electrodes (b) An earplug with electrodes

- ERA, ERB and ERH visible. and connector (opposite view
of Figure 1{(a)). Electrode ERE
is visible.

EarEEG is a well-established technology

Classical EEG reproduced: Sustained and event
related responses to audio and visual stimulus

To appear:

{c) Right ear with earplug. (d) Side view of test subject

High mutual information between ear and scalp showing the recording setup.
EEG Fig. 1. View of a right ear earplug and the Ear-EEG recording setup.

Kidmose, Preben, et al. "Ear-EEG from generic earpieces: A feasibility study."
Engineering in Medicine and Biology Society (EMBC), 2013
35th Annual International Conference of the IEEE. |EEE, 2013.

Lars Kai Hansen

Technical University of Denmark




Prediction model

. -
Neurotech for 24/7 brain R
state monitoring: EarEEG i
Gray matter
n
On the keyhole hypothesis: High mutual information
between Ear and Scalp EEG e vl ccioce
al] —
Kaare B. Mikkelsen®, Preben Kidmose®™*, Lars Kai Hansen”
0.8 4
] = Correlation + 2+
0.6 —: == Correlation based on local model
5 0.4
ear-EEG === Prediction S 0
2 —o.zé
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Figure 2: Short snippets of ear-EEG measurements together with their predictions

Figure 4: Prediction correlation, p, as a function of time since training (in blue). Shown
in red is prediction correlation for a model trained on data within the last 10 minutes.
Gaps correspond to data missing in the original data set.
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. a) Using only the left ear.
Lars Kai Hanse

Technical University of Denmark

®

(b) Decounled ears.

(¢) Coupled ears, with common refer-
ence.
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Neurotech for 24/7 brain state monitoring: Hyposafe

Aim:
Permanent recording in the wild -
Decoding hypoglaemia risk

Status
Very stable subcutaneous electrode

Magnetic coupling (signal / power) with
outside ear piece

Signal is highly correlated with surface
electrode in same location

Duun-Henriksen, Jonas, et al.

"EEG Signal Quality of a Subcutaneous Recording System Compared to Standard Surface Electrodes."”

Journal of Sensors 2015 (2015).

Lars Kai Hansen
Technical University of Denmark

lustration of
HypoSafe implantable device
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http://www.hyposafe.com/index.php

Ultra long term brain decoding in healthy control:
Hyposafe device

50 . ‘ i z ‘ : . ‘ o
45 : |¢
40 ‘ ’

30 |- “

Hz 2o g | |
201 i Hour
o s v e OO ) U AL
seconds
ALPHA CLUSTER EXPRESSION (DIS: 00,01,05)
How does mind wandering vary during the day?
N 0.4
How does a brain on vacation differ from a working brain? 5
% 03F-
Methods: é
. . 02
Power spectrum over 3 sec windows as basic features
Fit 15 clusters. Manually identify (2) alpha clusters; otbo
Assign 3 sec power spectra over 45 days to clusters...
0 L L
5 10 15 20 25

HOURS
1 Killingsworth, Matthew A., and Daniel T. Gilbert.
_ "A wandering mind is an unhappy mind." Science 330.6006 (2010): 932-932.
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Privacy... it’'s human to share

Personal Data Store

~

Intuitive data

! Images, speech, economical, commercial, location,
: individual thoughts
!

PDS frontend

Non-intuitive data

By /1 Y| e ——— Health: diet, complete motion patterns

Physiology: heart beat, skin resistance, gaze, brain data,
your mind set

Sandy Pentland calls for “a new deal on data” with

web )
browser three basic tenets:
Raw Data pﬁgge

—— Reuest
Relevant Summarized Data

1) you have the right to possess your data,
2) to control how it is used,
3) to destroy or distribute it as you see fit.

Privacy for Personal Neuroinformatics

Arkadiusz Stopezynski'?, Dazza Greenwood?, Lars Kai Hansen', Alex Sandy Pentland?
1 Technical University of Denmark

2 MIT Media Lab U

arks@dtu.dk, dazza@civics.com, lkai@dtu.dk, sandy@media.mit.edu ;“3




Conclusion

Human behavior is increasingly quantified, modeled
and predicted

The key technology is machine learning

Decoding the brain is imminent: Simple brain states
can be decoded with high accuracy...

... More complex mechanisms may be revealed with non-
linear decoders even in high dimensional settings ... and
some care!

Not so distant future: Permanent 24/7 brain state
decoding

Lars Kai Hansen
Technical University of Denmark
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What's on your mind?

|

Add: ¢] Link [g] Photos ‘we

Lars Kai Hansen
Technical University of Denmark
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http://www.cimbi.org/
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