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Do not multiply
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OUTLINE O

e Machine learning —the doubble agenda
— Aim |: To abstract generalizable relations from data
— Aim II: Robust interpretation / visualization
— The PR-plot for optimization
e Unsupervised (explorative)
— Factor models - Linear hidden variable representations
— Generalization in unsupervised models
— Visualization
— Non-linear models, KPCA, PR-plots for tuning
e Supervised models (retrieval)
— Visualization of non-linear kernel machines
— PR-plotting supervised models
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Recent reviews
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journal homepage: www.elsevier.com/locate/ynimg

@ NEUROIMAGING

/Decoding mental states from brain
activity in humans

John-Dylan Haynes **s and Geraint Rees's

Review
Encoding and decoding in fMRI

Thomas Naselaris ®, Kendrick N. Kay °, Shinji Nishimoto?, Jack L. Gallant *>*

? Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
® Department of Psychology, University of California, Berkeley, CA 94720, USA

Abstract | Recent advances in human neuroimaging have shown that itis possible to
accurately decode a person’s conscious experience based only on non-invasive measurements
of their brain activity. Such ‘brain reading” has mostly been studied in the domain of visual
perception, where it helps reveal the way in which individual experiences are encoded in the
human brain. The same approach can also be extended to other types of mental state, such as
covert attitudes and lie detection. Such applications raise important ethical issues concerning
the privacy of personal thought.

Sl

journal homepage: www.elsevier.com/locate/ynimg

Neurolmage 45 (2009) $199-5209

Decoding fMRI brain states in real:
Stephen M. LaConte

Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, '

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at ScienceDirect

Neurolmage

Machine learning classifiers and fMRI: A tutorial overview

Francisco Pereira ®*, Tom Mitchell ®, Matthew Botvinick ?

2 Princeton Neuroscience Institute/Psychology Department, Princeton University, Princeton, NJ 08540, USA
P Machine Learning Department, Camegie Mellon University, Pittsburgh, PA 15213, USA
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Ex 1 Tom Mitchell et al.: Predicting Human Brain Activity

Predictive model

O\
- O~
stimulus ~ O~ predicted
“(;T;I)e:(rjy” > o L+ activity for
“celery”
o) ry
O -
O £
| I
Intermediate Mapping learned
semantic features from fMRI
extracted from training data
trillion-word text
corpus

Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in
terms of intermediate semantic features whose values are extracted from a large corpus of text
exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the
fMRI signatures associated with each of these intermediate semantic features.

Tom M. Mitchell et al. Predicting Human Brain Activity Associated with the Meanings of Nouns,

Science, 320, pp. 1191-1195, May 30, 2008.
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Ex I Tom Mitchell et al.: Predicting Human Brain Activity

A “‘gat” “taste”

Predicted
“celery” = 0.84

Fig. 2. Predicting fMRI images
for given stimulus words. (A)
Forming a prediction for par-
ticipant P1 for the stimulus
word “celery” after training on  Predicted “celery”
58 other words. Learned c,; co-

efficients for 3 of the 25 se-

mantic features (“eat,” “taste,”
and “fill") are depicted by the
voxel colors in the three images
at the top of the panel. The co-
occurrence value for each of these features for the stimulus word “celery” is
shown to the left of their respective images [e.g., the value for “eat (celery)” is
0.84]. The predicted activation for the stimulus word [shown at the bottom of
(A)] is a linear combination of the 25 semantic fMRI signatures, weighted by
their co-occurrence values. This figure shows just one horizontal slice [z =
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“airplane”

Predicted:

QObserved:
average .
below
average

—12 mm in Montreal Neurological Institute (MNI) space] of the predicted
three-dimensional image. (B) Predicted and observed fMRI images for
“celery” and “airplane” after training that uses 58 other words. The two long
red and blue vertical streaks near the top (posterior region) of the predicted
and observed images are the left and right fusiform gyri.
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Ex Il Gallant et al.: Visualization of networks

Stage 1: model estimation
Estimate a receptive-field model for each voxel

/’= )
;HJ“:\ >

: 2 =01 —» [
. / 0.5
\ . :I—» x| =1 Responses
J

Fie::eptwe—ﬁeld model for one voxel

Kay, K.N., Naselaris, T., Prenger, R.J., & Gallant, J.L. (2008). Identifying natural images from human brain activity. Nature, 452, 352-355.
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Ex 11 Gallant et al.: Decoding visual cortex

Stage 2: image identification
(1) Measure brain activity for an image

%

Voxel number
Measured voxel
activity pattern

(2) Predict brain activity for a set of images using receptive-field models

=
|dentification performance
(% correct)

Voxel number )
Hepeated  Single

@ ’\/\d\/\/ Kay, K.N., Naselaris, T., Prenger, R.J., & Gallant, J.L. (2008).

Set of Receptive-field models Predicted voxel Identifying natural images from human brain activity. Nature,
images for multiple voxels activity patterns 452, 352-355,
I

N e > A0 - -\ St s2 S1 2

(3) Select the image (¥ ) whose predicted brain activity is most similar to
the measured brain activity
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Functional MRI

Signal

W G = £l
Time [seconds]

e Indirect measure of neural
activity - hemodynamics

e A cloudy window to the
human brain

e (Challenges:

— Signals are multi-
dimensional mixtures

— No simple relation between
measures and brain state -
“"what is signal and what is
noise”?
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BOLD fMRI1: Is hemodynamic de-convolution feasible?

LETTER C icated by Karl Friston

Bayesian Model Comparison in Nonlinear BOLD fMRI

" \\
Hemodynamics ES
-
Daniel J. Jacobsen h
dj@decision3.com :
Lars Kai Hansen : : ; -

Ikh@imn.dtu.dk Time [seconds]
Intelligent Signal Processing, Informatics and Mathematical Modeling,
Technical University of Denmark, Lyngby, N/A 2800, Denmark

Kristoffer Hougaard Madsen

Balloon model: Non-linear relations between stimulus and
';‘:l:;:'}::::‘:f:;’]:‘fj}P“]““m\: Informatics and Mathematical Modeling, phySIOIOgy - descrlbed by four non_linear dlfferentlal eqS.

Technical University of Denmark, Lyngby, NfA 2800, Denmark,

Neural Computation 20, 738-755 (2008)

(1)
Stimulus Neural activity
a(t) u(t)
(4)
Bayesian averaging with split-1/2 resampling loop Internal noise Physiological States

dw —)>

x(1)

to establish generalizability and reproducibility

K

0| D!, M (®)
R(M) = _% Zf P(ﬁ | Dll fﬂ) log p( | ‘2 f )Lff?. Measurement noise BOLD
i—1 FJ(H | DJ' ! !]"1) v(t) ‘ yi(t)

Figure 3.1: Overview diagram of hemodynamic models.
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BOLD hemodynamics R-Bayes model selection

Model A: constant input vs Model B: Fading input
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Figure 3: Regions of interest, marked with white squares. (A) Data set 1; T2* o o o : |:| S
weighted image slice parallel to the calcarine sulcus. (B) Data set 2; MPRAGE ST SO
(magnetization prepared rapid gradient echo) horizontal slice. : -0
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Figure 4 Prediction of data set 1. (A) Model A. (B) Model B. Note that the
confidence interval is an empirical confidence interval for the mean prediction,

based on the MCMC samples.
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Multivariate neuroimaging models

Neuroimaging aims at extracting the mutual
information between stimulus and response.

e Stimulus: Macroscopic variables, ”design
matrix” ... s(t)

e Response: Micro/meso-scopic variables, the
neuroimage ... x(%)

e Mutual information is stored in the
joint distribution ... p(x,s).

Often s(t) is assumed known....unsupervised
methods consider s(t) or parts of s(t)
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Multivariate neuroimaging models

e Univariate models -SPM, fMRI time series models etc.

p(x,5) = p(xIs)p(s) =] [ p(x; Is)- p(s) @

® MUItlvarlate mOdeIS 'PCA, ICA, SVM, ANN (Lautrup et al., 1994, Mgrch et al. 1997)

pP(X,8) = p(s|x)p(x)

e Modeling from data with parameterized function families —
rather than testing (siy) null hypotheses
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AIM

Do not multiply

1. Generalizability causes!

Climbi
Center for integrated
molecular brain imaging

Generalizablility is defined as the expected performance on a
random new sample

— A models mean performance on a "fresh” data set is an unbiased
estimate of generalization

Typical loss functions:

(—log p(s|x,D)), i {(—log p(x] D))

(s-s(D))?),

p(s|D)p(x|D)

Note: No problem to estimate generalization in hidden variable
models!

Results can be presented as "bias-variance trade-off curves” or
"learning curves”

Lars Kai Hansen
IMM, Technical University of Denmark

=
—
=

i



\ Bias-variance trade-off as function of PCA dimension
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Hansen et al. Neurolmage (1999)
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Learning curves for multivariate brain state decoding

45 45
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- = = Linear classifier -
" —— Monlinear classifier o
5 3
& 30| L 30
- €
8 ng o o5
" "
8 g
| % 5ol
o o
B B
E E
8| ~t-5-3 |
= F— "E-F ., B = i ;

1ol g 1ol — — Linear classifier

—F B8 — MNonlinzar classifier
8 5
0 1 1 O 1 ] 1 1 1
o 50 100 150 o 50 100 150 200 250
MNumber of examples in training set Mumber of examples in training set

PET fMRI

Finger tapping, analysed by PCA dimensional reduction and Fisher LD / ML
Perceptron. Merch et al. /PMI (1997)..."first brain state decoding in fMRI”
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AIM 11 Interpretation: Visualization of networks

C b |
Center for integrated
molecular brain imaging

A brain map is a visualization of the
iInformation captured by the model:

— The map should take on a high value in
voxels/regions involved in the response and a low
value in other regions...

Statistical Parametric Maps
Weight maps in linear models
The saliency map

The sensitivity map
Consensus maps

Lars Kai Hansen
IMM, Technical University of Denmark
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b ot M 90303 = _..hints from asymptotic theory

Linear unlearning for cross-validation

Lars Kai Hansen and Jan Larsen

cownect. Electronics Institute B349, Technical University of Denmark, DK-2800 Lyngby, Denmark
E-mail: lkhansen jlarsen@ei.dtu.dk

e Asymptotic theory investigates the sampling
fluctuations in the limit N -> oo

e (Cross-validation good news: The ensemble
average predictor is equivalent to training on all
data (Hansen & Larsen, 1996)

e Simple asymptotics for parametric and semi-
parametric models

e Some results for non-parametric e.g. kernel
machines

e In general: Asymptotic predictive performance
has bias and variance components, there is
proportionality between parameter fluctuation
and the variance component...

C mbi Lars Kai Hansen
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The sensitivity map & the PR plot

Neurolmage 15, 772-786 (2002)
doi:10.1006/mimg.2001.1033, available online at https/www idealibrary.com on |.E%|.

1.25

177

The Quantitative Evaluation of Functional Neuroimaging Experiments: 100l

Mutual Information Learning Curves W
U. Kjems,*"' L. K. Hansen,* J. Anderson, £ S. Frutiger,£§ S. Muley,§
0.75 =¥=9
10

J. Sidris.§ D. Rottenberg, 7§ and 5. C. Strothert 1§
4
9
0.50
ﬁ
3

*Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby. Denmark: 1 Radiclogy Departiment,
0.25

§Neurolagy Department, and Y Biomedical Engineering. University of Minnesota, Minneapolis, Minnesata 55455,
and {PET Imaging Center, VA Medical Center, Minneapolis, Minnesota 55417

Mutual Information

m. — olog p(s|x) 2 0.00

J 6)( . 0.00 0.10 0.20 0.30 0.40 0.50
J Pattern reproducibility

FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/noise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

e The sensitivity map measures the impact of a specific
feature/location on the predictive distribution
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NPAIRS: Reproducibility of parameters

| P, Prediction Accuracy Estimate |

M
AE,. 0 Inj
Predicted 3.0 [3.0]
“Design" Matrix | _ — 1 == Model estimation
Lk, 1| et ]
T ey
£ =
X 'i:t,?'gj M, Model Parameters
o : .
é}“’ including SPM
; Image and Training Split
ismssssssssssessmsmsas .........EEEE.SR].IE,- "Design” Matrix __.__-“E-"E_."___- sssmsssscsssscsnnfana:
= Training Split Data Set Test Split
M: Model Parameters ﬁf,gg:;_ T
; : 1 ST iction
including SPM ?-%‘3" X
L 1— 2
e’
[eat)
! iy A Predicted
Model estimation ] 15, | 'Design" Matrix
| 5 120

I P, Prediction Accuracy Estimate l

P! Reproducibility Estimate |

Neurolmage: Hansen et al (1999), Lange et al. (1999)

Hansen et al (2000),_Strother et al (2002), Kjems et al. (2002), LaConte
et al (2003), Strother et al (2004), Mondrup et al (2011)

C bi Lars Kai Hansen Brain and Language: Hansen (2007)
i IMM, Technical University of Denmark
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Reproducibility of internal representations

Predicting applied static force
with visual feed-back

w=0.05
H=10
8 subjects

A

¥ @
)@ 6

Split-half resampling provides unbiased
estimate of reproducibility of SPMs

Neurolmage: Hansen et al (1999), Hansen et al (2000), Strother et al (2002),
Kjems et al. (2002), LaConte et al (2003), Strother et al (2004),

C mbi Lars Kai Hansen ..
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Unsupervised learning

Explorative modeling
Learning stable structures in data p(X,s)

To D'oh or not to D'oh

L4 -
( m bl Lars Kai Hansen
Center for integrated
molecular brain imaging.
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Unsupervised learning:
Factor analysis generative model

. Source distribution:
X= AS T8 N N ( Z) PCA: ... normal
ICA: ... other

............ IFA: ... Gauss. Mixt.

p(x |28 ) IJ X A,s ,Z)[S(q )ﬂj kMeans: .. binary

lllllllllll

1 T 1
——(X-A8)" x As— ) _
p(X|A,s,Z) =272 [Y2e 2 PCA: T=02.1,

FA: X=D
S known: GLM
(1-A)1 sparse: SEM
A Hgjen-Sgrensen, Winther, Hansen,
S’A pOSItIVE. NMF Neural Compution (2002), Neurocomputing (2002)
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Factor models

Climbi
Center for integrated
molecular brain imaging

Represent a datamatrix by a low-dimensional approximation
|dentify spatio-temporal networks of activation

TIME (t)

X

LOCATION (i)

— — =

Lars Kai Hansen

X (i, 1) zzkil

IMM, Technical University of Denmark

TIME (t)

S

LOCATION (i)

A, K)S (K, 1)
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Matrix factorization: SVD/PCA, NMF, Clustering

Figure 1 Non-negative matrix factorization (NMF) leams a parts-based representation of
faces, whereas vector quantization (V@) and principal components analysis (PCA) leam
NMF holistic representations. The three leaming methods were applied to a database of
i m = 2,429 facial images, each consisting of n = 19 x 19 pixels, and constituting an
\ A n > m matrix X Al three find approximate factorizations of the form V' == WH, but with
ol RL3 & three different types of constraints on Wand H, as described more fully in the main text
and methods. As shown in the 7 % 7 montages, each method has leamed a set of
r = 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
= represented by a linear superposition of basis images. The coefficients of the linear
* superposition are shown next to each maontage, in a 7 > 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

Original

Leaming the parts of objects hy
q ; u _ non-negative matrix factorization

Daniel D. Lee* & H. Sebastian Seung*t

EEE tk

o I S T

gﬁ‘- T T * Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
. ) - - . — .. . . .
e a ,_j.r-- - + Department of Brain and Cognitive Sciences, Massachusetts Institure of
= i e Technology, Cambridge, Massachuserrs 02139, USA
FEHIG A N A 2
Sy 4 =
s de 5 NATU
o R i el X =
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ICA: Assume S(k,t)’s statistically independent

(McKeown, Hansen, Sejnowski, Curr. Op. in Neurobiology (2003)

L4 -
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DTU:ICA toolbox

< < < <

C b |
Center for integrated
molecular brain imaging

Infomax/Maximum likelihood
Bell & Sejnowski (1995), McKeown et al (1998)

Dynamic Components
Molgedey-Schuster (1994), Petersen et al (2001)

Mean Field ICA
Hgjen-Sgrensen et al. (2001,2002)

Features:
Number of components (BIC)
Parameter tuning
Binary and mixing contraints (A)
Demo scripts incl. fMRI data

http://cogsys.imm.dtu.dk/toolbox/ica/

Lars Kai Hansen ..
IMM, Technical University of Denmark
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Modeling the generalizability of SVD

Rich physics literature on "retarded” learning

e Universality

— Generalization for a "single symmetry
breaking direction” is a function of ratio
of N/D and signal to noise S

— For subspace models-- a bit more
complicated -- depends on the
component SNR’s and eigenvalue
separation

— For a single direction, the mean squared
overlap R? =<(uT,*u,)?> is computed
for N,D -> oo

B (aS*-1)/SQ+aS) a>1/5?

R2
0 a<1/S?

a=N/D S=1/6*° N_=DI/§°

Hoyle, Rattray: Phys Rev E 75 016101 (2007)

Lars Kai Hansen
IMM, Technical University of Denmark

OVERLAP W. SYMMETRY BREAKING DIR.

SINGLE SYMMETRY BREAKING DIRECTION (D=104)
I ——t—tt—t——o—0—9

100 15 200
TRAINING SET SIZE (N)

N, = (0.0001, 0.2, 2, 9, 27, 64, 128, 234, 400, 625)
o = (0.01, 0.06, 0.12, 0.17, 0.23, 0.28, 0.34, 0.39, 0.45, 0.5)
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Generalizability — test training misalignment
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Restoring the generalizability of SVD

Climbi
Center for integrated
molecular brain imaging

Now what happens if you are on the slope
of generalization, i.e., N/D is just beyond
the transition to retarded learning ?

The estimated projection is offset, hence,
future projections will be too small!

...problem if discriminant is optimized for
unbalanced classes in the training data!

Lars Kai Hansen
IMM, Technical University of Denmark
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Heuristic: Leave-one-out re-scaling of SVD test projections

3007
s00f X . ]
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& I ;1 A
i N W
-2.00¢ < e
-3.00

Conventional 3VD

-400 -300 -200 -1.00 0.00 1.00 2.00 3.00 4.00
First 3¥'D component

Z.00
— — — SVD training set projection stdev
GenSWD training set proj. stdew
— Test set projection stdew
1.50F

Slandard devialion

o
0

I

|

|

|

|

0.50 § q

0.00
1 5 10 15 z0
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C mbi Lars Kai Hansen

e IMM, Technical University of Denmark

molecular

brain imaging.

Second GenSVD component

Generalizable SVD

1501 Solid: Train
+ Cipen: Test
100k * 2 Trace scan 1
0 Trace scan 2
*  Mirror scan 1
+* i
0ok & Mirror scan 2
0.00F 1
-0.50 - 1
-1.00F .
-1.50} . . 1

-2.00 -150 -1.00 -0.40 0.00 0.50 1.00 1.60 2.00
First Gen3%D component

N=72, D=2.5 104

Kjems, Hansen, Strother: "Generalizable SVD for
lll-posed data sets” NIPS (2001)
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Re-scaling the component variances

: — — — SVD training set projection stdev
GenSVD training set proj). stdev
= Test set projection stdev

e Possible to compute the
new scales by leave-one-
out doing N SVD’s of size

N<<D oso \ |

0.00—

Standard deviation

Compute Uy AV, =svd(X) and Q, = [gq;] = AV,
foreach j = 1...N

_ 1
9= =1 2y Uy .
Compute B_jA_J.V_JT =svd(Q, — Q)
Zj = B-jB_;r(Qj - q—j)

12 1 2
AV = w3 Zy‘ “ij
Kjems, Hansen, Strother: NIPS (2001)

C mbi Lars Kai Hansen .. ::_
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Challenges for the linear factor model

e Too simple?
— Non-linear manifold
— Temporal structure in networks -=> Convolutive ICA

e Too rich and over-parametrized?

— Multi-dimensional macro and micro variables
(space/time/frequency, group study, repeat trials)

— Multiway methods

L4 -
‘ m bl Lars Kai Hansen
Center for integrated
molecular brain imaging

IMM, Technical University of Denmark
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Beyond the linear model: De-noising by projection onto
non-linear signal manifolds: kPCA

e Kernel PCA is based on non-linear mapping of data to

X, > (X,)=¢,, N=L..N

Aim is to locate maximum variance directions in the feature space, i.e.
_ T\
|, = arg max <(I -(p) o) =D LS,
Kk

1=

N
The principal direction is in the span of data: |, = Zal,n(ﬂn
=1

2
alzarg maX<aT 'K'a>, Knn' :(p:]- '¢n' :exp _”Xn _Xn'H
Jal=2 | 2c

TJ Abrahamsen and LK Hansen. “Input Space Regularization Stabilizes Pre-image for Kernel
PCA De-noising”. Proc. of Int. Workshop on Machine Learning for Signal Processing, Grenoble, France (2009).

C mbi Lars Kai Hansen ..

Center for ntegrated IMM, Technical University of Denmark
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Manifold de-noising:

The pre-image problem

Now, assume that we have a point of interest in feature space, e.g. a
certain projection on to a principal direction “®”, can we find its
position “z” in measurement space?

z =9 (9)

Problems: (i) Such a point need not exist, and (ii) if it does there is no
reason that it should be unique!

Mika et al. (1999): Find the closest match.

+ Ground truth

@)
N *  Moisy examples
x
%ok
x
o
x f =
£ ® X
¥ x
x x
x x
B X x
i
% x
Fie x
¥
x

©  Reconstructed

= kS
x
x b “’(
k3 5
% TRME L (O Comupted
-'-i— kS e *
.
+ x
«

®
#
®
"

C mbi Lars Kai Hansen

for ntegrated IMM, Technical University of Denmark
lar in;

“ /“—S J,
: Pyip(x0)
z wl(z /

e L Nltz) — Pyplxo)lI®

.uznk/ |~

X F

» =
L L

Figure 1: The pre-image problem in kernel PCA denoising concerns estimating z from xg,
through the projection of the image onto the principal subspace in feature space, F.
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INPUT SPACE REGULARIZATION STABILIZES PRE-IMAGES
FOR KERNEL PCA DE-NOISING

Trine Julie Abrahamsen  Lars Kai Hansen

008000 000000001
T pRMMY

A

3 1
1 1 ?
Sl B M Al

Fig. 4 Top: Example of de-noised digits using a very non-
linear kemel (¢ = 50) and 100 principal components. (&) 100 =

M N . s : . c [1:]] Mo. of PCs & {d) Mao. of PCs
vi1ka et al and (d) our approach, note the visual mprovement
of the recovered pre-images in the red box. The colommap
has been adjusted for better visuahzation. Beottom: The mm-
age intensity along the red line indicated above. INote the im-
provemed SNE in the result of the new methed.

(al (o)

400

300

200
¢ ! Mo, of PCs T 109 Mo. of PCs

Fig. 2. Experiment to illustrate the stability of pre-image based de-noising of USPS digits. A taining set of 400 digits
(1000, 2, 4, 9) 15 used to define the signal mamfold. We show the confidence mtervals (5th and the 95th percentile) for
the mean square error (MSE) in different combinations of kPCA subspace dimension and non-linearity. MSE computed for
400 de-noised test samples for (a) Kwok-Tsang, (b) Mika et al., (c) Dambrewille et al., and (d) the new input space distance
regularization approach. The previous schemes are seen to deteriorate in the non-linear regime (small ).

TJ Abrahamsen and LK Hansen. Proc. of Int. Workshop on Machine Learning for Signal Processing, Grenoble, France (2009).

C mbi Lars Kai Hansen

IMM, Technical University of Denmark
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Regularization mechanisms for pre-image
estimation in fMRI denoising

L2 regularization on denoising distance

(’Q{Zl""'{---. Pq"fa(xﬂ)
T 7 le(2) = Pap(xo)||?

Figure 4.10: The pre-image problem in kernel PCA de-noising concerns
estimating z from Xg, through the projection of the image onto the principal
subspace. Presently available methods for pre-image estimation lead to
unstable pre-images because the inverse is ill-posed. We show that simple
input space regularization, with a penalty based on the distance ||z — xol|
leads to a stable pre-image.

L1 regularization on pre-image

#(xo)

-~

Pyp(xq)
wl s #2) A0(a) - Pyi(xo |2
umV/

X F

» .
L L

Figure 1: The pre-image problem in kernel PCA denoising concerns estimating z from xq,

. .
Lars Kai Hans . ; .. .
C m b l ] through the projection of the image onto the principal subspace in feature space, JF.
Center for ntegrated IMM, Technical
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Beyond the linear model: Kernel representaions
Individual denoised scan reproducibility

cor: 0.94 cor: 0.86 cor: 0.9%94 cor: 0.95 cor: 0.92 cor: 0.62 cor: 0.1% cor: 0.38 cor: 0.81 cor: 0.17

06000000000
0000000060

Figure 5: Example of the GPS reconstruction after projection on the two training sets
in a split half experiment (top and bottom panel respectively). The five left panels show
denoised active scans, whereas the five panels to the right show baseline scans. The
correlation between the two reconstructions are given above each column. The higher
reproducibility of the active scans are evident. The extended bright areas in the lower
part of the slice in activated scans are located in the primary visual areas.

Data split in twice: training and test data, training set is split
half to estimate reproducibility of denoising process

Sparse non-linear denoising: Generalization performance and pattern reproducibility in functional MRI
Trine Julie Abrahamsen, Lars Kai Hansen, DTU 2011

C mbi Lars Kai Hansen -.

i IMM, Technical University of Denmark
olecular brain imagin;
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Beyond the linear model:
Optimizing denoising using the PR-plot

C mbi Lars Kai Hansen -.

ws IMM, Technical University of Denmark

I I I I I I I I
- u .
c=05k
a E=355
g 085 |:=D.{IE. u &c:f“ .
[ c=1 c= I ’
E c::&% C=
2 o= %
E
o pgk ® c=005 |
@ c=05 1% dense
10% dense
B dense
085 ® c3l I I I I I I % ces
’ 058 0.& 0El 0.2 0.E3 064 0.5 068

Reproducibility

Figure 2: Prediction/reproducibility plots using all scans for the single slice fMRI visual
block activation experiment. The GPS estimate when using a non-linear kernel are seen
to outperform all other estimates in terms of combined prediction and reproducibility
measures. Location in the upper right corner is preferred.

vt o - 2
z = argmin ||p(z) — FPyp(xo)||” + Al|z]e, -
zeX
GPS = General Path Seeking, generalization of the Lasso method
Jerome Friedman. Fast sparse regression and classification. Technical report,
Department of Statistics, Stanford University, 2008.
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Variance inflation
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Data represented as multiway arrays

F
a ap, . .
=§ :| =§ : ‘ " EEG visual response to meaningful
s A=1 S

—1 N vs non-meaningful drawings (N=11).

F
Tiyig = 9 QigASigA + €irig  Tigigis = Y _ iy AdighSiah + €iyigi
. A=1 . A=1 ,
Factor Analysis PARAFAC

Fig. 1. Graphical representation of the factor analysis to the left and the PARAFAC decomposition of a 3-way array to the right. Like the factor analysis,
PARAFAC decomposes the data into factor effects pertaining to each modality. F denotes the number of factors.

. L
3-way analysis: osf | o8 ﬂ
Channel*freg*time o | o
o P A | [ PR L S
T E e e e B e e w
5-way analysis: Lo il il
Channel*freg*time*subject*condition o

Mgrup et al. Neurolmage (2005), Neurolmage (2008)

C mbi Lars Kai Hansen .. ::_
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ERPWAVELAB

e|nterfaced with EEGLAB

«Single subject analysis
Artifact rejection in the time/freq domain
NMF decomposition
Cross coherence tracking

Multi subject analysis
Clustering

]
"]
il
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¥
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i

K
o * i
o i

[ ] ‘:Ella:_'

Analysis of Variance (ANOVA) EE E_
Tensor decomposition o e
. e e e
i o
o
||

Mgrup et al. J. Neuroscience Methods (2007),
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Supervised learning

Retrieval of relevant patterns p(s|x)

L4 -
‘ m bl Lars Kai Hansen
Center for integrated
molecular brain imaging.

IMM, Technical University of Denmark
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Generalizable supervised models - ‘mind reading’

e Non-linear kernel machines, SVM

Local voting +/-

s(n) = > " a(MK(x,,x,)

K(X ,X.)= exp{ P ”}

PET: Lautrup et al. (1994), fMRI: Mgrch et al. (1997)

L4 -
‘ m bl Lars Kai Hansen ..
Center for integrated
molecular brain imaging
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Visualization of SVM learning from fMRI

Climbi
Center for integrated
molecular brain imaging

Visualization of kernel machines

— How to create an SPM for a kernel machine
— The sensitivity map for kernels
— Example:

s(N) = Y, (MK (X, %)

K (X ,X.)=exp {_ ||xn;§n-||2 }

Lars Kai Hansen
IMM, Technical University of Denmark
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Visualization of kernel machine internal
representations

1000 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL 10, NO. 5, SEFTEMBER 1999

Input Space Versus Feature Space
in Kernel-Based Methods

Bernhard Schélkopf, Sebastian Mika, Chris J. C. Burges, Philipp Knirsch,
Klaus-Robert Miller, Gunnar Riétsch, and Alexander J. Smola

Neurolmage

ELSEVIER
www.elseviercom/locate/ynimg
Neurolmage 26 (2005) 317 - 329
Support vector machines for temporal classification of block design
fMRI data

Stephen LaConte,” Stephen Strother,” Vladimir Cherkassky.® Jon Anderson,” and Xiaoping Hu™*
The Pre-Image Problem in Kernel Methods

James T. Kwok
Tvor W. Tsang

Departinent

JAMESKAOCS UST . HK

IWORGOS UST. HK
Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong

Existing visualization methods

— Pre-image (Mika et al., NIPS 1998, Schoélkopf et al., 1999)
Basically an ill-defined objective, useful for denoising

— Multi-dimensional scaling (Kwok & Tsang, ICML 2003)
Interpolates nearest neighbors, suffers in high dimensions

Problem: Existing methods provide local visualization, which point should be
visualized? Algorithms are reported unstable (may be fixed though!).

C mbi Lars Kai Hansen

e IMM, Technical University of Denmark

molecular brain imaging
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The sensitivity map

Neurolmage 15, 772-786 (2002)
doi:10.1006/mimg.2001.1033, available online at https/www idealibrary.com on |.!%|.

1.25

177

The Quantitative Evaluation of Functional Neuroimaging Experiments:

1.001

Mutual Information Learning Curves W
U. Kjems,*"' L. K. Hansen,* J. Anderson, £ S. Frutiger,£§ S. Muley,§
0.75 =¥=9
10

J. Sidris.§ D. Rottenberg, 7§ and 5. C. Strothert 1§
4
9
0.50
ﬁ
3

*Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby. Denmark: 1 Radiclogy Departiment,
§Neurolagy Department, and Y Biomedical Engineering. University of Minnesota, Minneapolis, Minnesata 55455,
and {PET Imaging Center, VA Medical Center, Minneapolis, Minnesota 55417
0.25

Mutual Information

m. — olog p(s|x) 2 0.00

J 6)( . 0.00 0.10 0.20 0.30 0.40 0.50
J Pattern reproducibility

FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/noise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

e The sensitivity map measures the impact of a specific
feature/location on the predictive distribution

C mbi Lars Kai Hansen

e IMM, Technical University of Denmark
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Consistency across models (left-right finger tapping)

LogReg SVM RVM

NCT/ NS\

0/ \ WY\ S )/ N/

Sparsity increasing |

LogReg LoegReg SVM

Figure 7: {MRI fingertapping experiment - consensus analysis, The plots show the extend
of consensus in the average rSPI among the three models. The rSPI for LogReg was sealed
by itg maximum value. Hereafter the r8FIs from the SVL and BV were transformed to
match the histogram of that of LogReg. Correlation coefficients between histograms are
found on top of the plots.

C mbi Lars Kai Hansen -.

e IMM, Technical University of Denmark
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Sensitivity maps for non-linear kernel regression

Masagmees frama ne o s seaaseaas crosas s ug

SENSITIVITY MAP, SPARSITY =02

T T T T
1t EEEEEEEEEEEEEEE NN W
]
0 ¥ _I‘ sot with N = 400 examples. The mage -toenoise ratio is SNR = 1
: the additive noise = apit variancee. The target finction has i acdition: been
a comtaminated by 1000 random lubel noise. The four subiplots show: The sensitivity
-1 == bl wap (upper keft), the near-perfect receiver operating curve (ROC, upper right ),
the true activation mwap (lower Ieft), and a random exmnple of the simulated brain
M M N N

inages, We modeled the data set using the ke
0 20 40 60 80 100 model

vavs estimanted using the so-called least an

TIME with a degree of sparsity of 0.2, e, using N = 002 » 400 = 80 support vectors,

Fig. 1. XOR-image set define by four activated regions (A,B,C,D). Initially we let
regions (A,B.D) be activated by random sequence taking values 1, as shown in
example in the bottom panel (full curve). The target signal, also taking values
t, = pml, and is also indicated in the bottom panel (dashed line). The region (C) is
activated with an XOR-sequence relative to (A) and ¢,,, so that ¢, = A, =%, hence,
i the active state the two regions (A,C) are randomly. but identically activated,
while in the resting condition, they are random, but opposite

TRUE MAP

1o
on

5
06

(]
04

-10

Fig. 4. XOR-image set define by four activated regions, Similar to fgure 2, however
the mage signal-to-noise ratio s SN =01,

C mbi Lars Kai Hansen
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Initial dip data: Visual stimulus (TR 0.33s)

C m b |
Center for integrated
molecular brain imaging

Gaussian kernel, sparse
kernel regression

Sensitivity map
computed for whole slice

Error rates about 0.03

How to set
— Kernel width?
— Sparsity?

Lars Kai Hansen
IMM, Technical University of Denmark

TRAIN ERR RATE: 0.025 TEST ERR RATE: 0.030

200 400 80 0 200 400 600

K Ktest

200 400 600 200 400 600
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Initial dip data: Visual stimulus (TR 0.33s)

e Select hyperparameters
of kernel machine using
NPAIRS resampling

— Degree of sparsity

— Kernel width,
localization of map

L4 -
‘ m bl Lars Kai Hansen
Center for integrated
molecular brain imaging

IMM, Technical University of Denmark
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Non- L nearity in TMRI1? Visual stimulus: half checker board no/left/right/both

= REST

RIGHT
BOTH

Figure 1: PCA analysis of the fMRI data set. An example of the three first PCs estimated
from the training set in a NPAIRS split. The scatter plots show both training (filled
markers) and test examples projected onto the PCs. The blue and red voxels on the
brain slices corresponds to negative and positive PC loadings respectively. The maps are
thresholded to show the 5 upper positive and negative percentiles.

C mbi Lars Kai Hansen
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Non-linearity in fMRI1 — detecting

networks

Peter Mondrup Rasmussen et al.

Neurolmage 55 (2011) 1120-1131
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molecular brain imaging

lirasat keensl, weight map

Lars Kai Hansen
IMM, Technical University of Denmark
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A: Easy problem-

(Left vs Right) and RBF
kernel is wide ... i.e.
similar to linear kernel

B: Easy problem-
Pars optimized to yield
the best P-R

C : Hard XOR problem
Pars optimized to yield
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More complex interactions: Networks

Discriminative Network Models of Schizophrenia

Guillermo A. Cecchi, Irina Rish
IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

Marion Plaze
INSERM - CEA - Univ. Paris Sud
Research Unit U.797
Neuroimaging & Psychiatry
SHFJ & Neurospin, Orsay, France

Catherine Martelli
Departement de Psychiatrie
et d’Addictologie
Centre Hospitalier Paul Brousse
Villejuif, France

Gaussian Naive BEIYES
schizophrenic vs nomal
#[= & —activation 1 FrenchNative - Silence
— # — activation & FranchMativa
07| - # - activation 8 Silence
—a— dagraa (long-distance
== dagraa (full)
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classification error

Benjamin Thyreau

CEA. Saclay. France

Jean-Luc Martinot
INSERM - CEA - Univ. Paris Sud
Research Unit U.797
Neuroimaging & Psychiatry
SHEFJ & Neurospin, Orsay, France

Neurospin

Marie-Laure Paillere-Martinot
AP-HP, Adolescent Psychopathology
and Medicine Dept., Maison de Solenn,
Cochin Hospital, University Paris Descartes

F-75014 Paris, France

Support Vector Machine:
schizophrenic vs normal

Bertrand Thirion
INRIA
Saclay, France

ROI name (X.y.Z) position Anatomical position
1 "Temporal_mid_L" -44.-48.4 Left temporal
2 "Temporal_mid_et_sup_L’ -56.-36.0 Middle and superior left temporal
3 *Frontal_inf_L* -40,28.,0 Left Inferior frontal
4 “cuneus L -12,-72,24 Left cuneus
5 *Temporal sup_et_mid L’ -52.-16.-8 Middle and superior left temporal
6 "Angular L’ -44,-48,32 Left angular gyrus
7 *Temporal sup_R’ 40.-64,24 Right superior temporal
8 "Angular R’ 40.-64.24 Right angular gyrus
9 "Cingulum_post R’ 4,-32,24 Right posterior cingulum
10 TACC 0,20,30 Anterior cingulated cortex

Figure 1: Regions of Interest and their location on standard brain.

Jean-Baptiste Poline
Neurospin
CEA., Saclay, France

Markov Random Field:
schizophrenic vs normal

MRF vs GNB vs SVM:
schizophrenic vs normal
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e - aclivation 1 FrenchMative - Silance

-+ — aolivation B FrenchMative
— # — activation B Silanca
== dogrea (long-distanca)
—a— dagrea (full)

>,
A T
F ............ B iiimmsiciesiiimmssresss e mm s
1] \""-
1] 1‘-.

N o A
L oe S e R St
b2 ST T

P L -4
‘ + N

[k

T

(13

o5

o4

m WARF (0.1): degres (long—distanca)
—a—GMEB: dagres (long-distanca)
—a—S5VWM:degree (long—distanca)

1 1w
K top voxels (ttest)

(a)

1" 1w 10
K top voxels (ttest)

(b)

=0

100 150 20 50
K top voxels (Hest)

(c)

50 1o 150 O 50 300
K top voxels (ttest)

(d)

Figure 4: Classification results comparing (a) GNB, (b) SVM and (c) sparse MRF on degree versus activation
contrast maps; (d) all three classifiers compared on long-distance degree maps (best-performing for MRF).
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Detecting networks with relational models

Morten Mgrup et al. NIPS 2010

Different networks in fMRI resting state fluctuations separates a group of MS patients

from normal group (Ntot =72)
Infinite Relational Model

(IRM)
A aHE e~ Hernoullilz] p™'z )
Pairwise Mutual Information (MI) P 2 )
between 2x2x2 voxel groups 4 g g
16,3 = 3 Pyl o) log riilsst) gl P
\f, 1] = ‘I_' i, ) log .“'_||er".|;!¢| : E pl_‘!l
" — o A * 2 '
= :
Top 100°000 2 I L
-] w | ) 1
Ml links E Componenis
o P
= Functional units defined by | | Communication between
§ - coherenl Groups of Voxels (Z) the functional units (p™')

5039 Voxel groups

Basic measure: Mutual information between time series (can detect similarity by modulation)

Infinite Relational Model (IRM) is inspired by social networks:
A new clustering approach - clustering based on similar communication instead of similar time series

C mbi Lars Kai Hansen
IMM, Technical University of Denmark

=
—
=

i



IRM models - Detect communities of similar
communication

A Is the mutual information graph, p the "community” connectivity matrix, and
Z is the community assignment variables

Zla ~ DP(a)

p™ (a.b)|BT(a.b). 3 (a,b) ~ Beta(8"(a.b),B3 (a.b))
A ) Z, p™  ~ Bernoulli(z, p(”)z )

Detecting multiple sclerosis vs normal subjects

Raw data PCA ICA Degree IRM

SVM 51.39 55.56 6389 (p <0.04) 59.72  T222(p < 0.002)
LDA 59.72 51.39  63.89(p <0.05) 51.39  75.00(p < 0.001)
KNN 38.89 58.33 56.94 51.39  66.67(p < 0.01)

L4 -
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Conclusion

Ciimbi

Machine learning in brain imaging has two equally important
aims

— Generalizability

— Reproducible interpretation

Can visualize general brain state decoders maps with
perturbation based methods (saliency maps, sensitivity maps
etc)

NPAIRS split-half based framework for optimization of
generalizability and robust visualizations

More complex mechanisms may be revealed with non-linear
detectors

Lars Kai Hansen
IMM, Technical University of Denmark
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Outlook — the future of mind reading

e More “ecological” conditions

e Long time observations in the "wild”

Fig. 1. Handheld brain scanner components. Emotiv EPOC wireless EEG headset (1),

e EEG real time 3D imaging for
- Emotiv Receiver module with USB connector (2), USB connector and adapter (3+41),
b I o—feed baCk and Nokia N900 mobile phone. The total cost of the system is less than USD1000,

e 24/7 monitoring

Fig. 3. A user interacting with a 3D model of the brain using the handheld br
scanner device with touch-based interaction.

Nustration of .
HypoSafe implantable device hypo

C mbi Lars Kai Hansen

i IMM, Technical University of Denmark
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http://www.hyposafe.com/index.php�
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