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State-of-the-Art

Survey

Motivation for opening the black box
— Trust, debugging, legal, scientific applications
— Explanation as an ill-posed task
— Objectives viz. Explainable Expert Systems
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Interpreting, Explaining and
Visualizing Deep Learning

LNAI 11700

Function level visualization

— Robustness vs methods, networks, training sets
— Uncertainty quantification

Decision explanations

— New result: Evaluation by simple counterfactuals
- New result: Better performance by model averaging
- New result: Resilience to “fairwashing” through model averaing

) Springer

Open problems

— Evaluation?

— i ?
Human in the loop: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K. and Miller, K.R. eds., 2019.

— Causal modelling? Explainable AI: interpreting, explaining and visualizing deep learning Vol. 11700.
Springer Nature.
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Opening the black box - motivations

Trust & debugging
Al as a collaborator / teacher — AI social competences
Verification, performance optimization...
Align values - fairness, reduce biases, adversarial risks ...
Legal requirements - "right to explanation”
General data protection regulatory May 26, 2018, DPOs
Scientific applications of machine learning
learning from machine learning solutions,
causal mechanisms,

Explanation is an (interesting) ill-posed task

Existence? - Unclear objectives, no canonical evaluation metrics

Uniqueness? — model uncertainty, robustness

3 1 24012 International Data Privacy Law, 7(2), pp.76-99.

Goodman, B. and Flaxman, S., 2016. European Union regulations on algorithmic decision-making and a" right to explanation". arXiv preprint arXiv:1606.08813.
Wachter, S., Mittelstadt, B. and Floridi, L., 2017. Why a right to explanation of automated decision-making does not exist in the general data protection regulation.




Explainability - objectives Second generation AI Swartout and Moore (1993) DTU
o

Fidelity
The explanation must be a reasonable representation of what the
system actually does.

Understandability
Involves multiple usability factors including terminology, user
competencies, levels of abstraction and interactivity.

Sufficiency
Should be able to explain function and terminology and be detailed
enough to justify decision (causal explanations)

Low Construction overhead & Efficiency:
The explanation should not dominate the cost of designing the Al.
The explanation system should not slow down the AI significantly.
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Domain l'?:.lmm " Digitalis Advisor _

Model Principles
English User
XPLAIN

The MYCIN Architecture

and biomedical research, 8(4), pp.303-320. (antibiotics administration)

4 | 24.0 Swartout, W.R., 1983. Xplain: A system for creating and explaining expert consulting programs (No. ISI/RS-83-4). (digitalis therapy heart issues)

Swartout, W. R. and Moore, J. D. 1993. Explanation in second generation expert systems. In Second generation expert systems, pages 543-585. Springer.
Shortliffe, E.H. et al., 1975. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Computers




Can we trust human explanations?-
“choice blindness”
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—
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Failure to Detect Mismatches
Between Intention and Outcome
in a Simple Decision Task

Petter Johansson,'™ Lars Hall,'*1 Sverker Sikstrém,’
Andreas Olsson?

“Even when they were given unlimited time to deliberate upon their choice no more than
30% of all manipulated trials were detected.

But not only were the participants often blind to the manipulation of their choices, they also
offered introspectively derived reasons for preferring the alternative they were given instead.

In addition to this, manipulated and non-manipulated reports were compared on a humber of

different dimensions, such as the level of emotionality, specificity and certainty expressed, but no
substantial differences were found”

5 Johansson, P., Hall, L., Sikstrém, S. and Olsson, A., 2005. Failure to detect mismatches between intention and outcome in a simple decision task. Science, 310(5745), pp.116-119.
Johansson, P., Hall, L., Sikstrém, S., 2008. From change blindness to choice blindness. Psychologia, 51(2), pp.142-155.



Saliency map for a neural network for decoding PET brain scans (1994-95) DTU
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LeCun, Y., Denker, 1.S. and Solla, S.A., 1990. Optimal brain damage. In Advances in neural information processing systems (pp. 598-605).
Lautrup, B, Hansen, LK, Law, I., Mgrch, N, Svarer, C, Strother, S Massive weight sharing: a cure for extremely ill-posed problems.

In Workshop on supercomputing in brain research: From tomography to neural networks. 137-144 (1994).

Mgrch N, Kjems U, Hansen LK, Svarer C, Law I, Lautrup B, Strother S: Visualization of Neural Networks Using Saliency Maps.

In Proc. 1995 IEEE International Conference on Neural Networks, Perth, Australia, (2):2085-2090 (1995).






Dermatologist-level classification of skin cancer with deep neural networks

nature o

International journal of e

Letter Published: 25 January 2017
Inference classes (varies by task)

Dermatologist-level classification of skin
cancer with deep neural networks

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757)
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Inspiration from cognitive science:
Communicating uncertainty improves group inference

'To come to an optimal joint decision, individuals must share
information with each other and, importantly, weigh that
information by its reliability...”

D

WCS
o 1.6
= DSS —
©
= 1.4
% § no noise =]
bl ;,f‘ 1.2 unequal noise O
g ~ 1 equal noise A
e D:QLTE.,? Correct += .§ Regression fit ==
| 3 =08
Interval 1 Interval 2 Ra) h
' . v- | Indivich orouw Toochack ~ 0.6
_ made declared _requir od ©
g 0.4 5 :
0 0.2 0.4 0.6 0.8 1
o
miin / 5mmr

. . .. Rati f tici t detecti “sl "
For interactive decisions ... atio of participant detection “slopes

communication of internal uncertainty helps: “dyad benefit”

Bahrami B, Olsen K, Latham PE, Roepstorff A, Rees G, Frith CD. Optimally interacting minds. Science. 2010 Aug 27;329(5995):1081-5.
Navajas, J., Niella, T., Garbulsky, G., Bahrami, B. and Sigman, M., 2017. Deliberation increases the wisdom of crowds. arXiv preprint arXiv:1703.00045




NPAIRS: Sensitivity map w/ uncertainty estimates

Neurolmage 15, 772-786 (2002) ®
doi:10.1006/nimg.2001.1033, available online at http/www.idealibrary.com on IDE 1"

The Quantitative Evaluation of Functional Neuroimaging Experiments:

Mutual Information Learning Curves

U. Kjems.*"' L. K. Hansen,* J. Anderson.t# S. Frutiger.'S§ S. Muley.§
J. Sidtis,§ D. Rottenberg, 7§ and S. C. Strothert 8§89
*Deparrmenr of Marhemarical Modeliing, Technical Universiry of Denmark, DK-2800 T yngby. NDenmark: | Radiology Department.

§Neurology Department. and Y Biomedical Engineering. University of Minnesota, Minneapolis. Minnesota 55455:
and $PET Imaging Center. VA Medical Center, Minneapolis, Minnesota 55117
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FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/noise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

The sensitivity map measures the impact that a given
feature has on the predictive distribution

Zurada, J.M., Malinowski, A. and Cloete, 1., 1994, June. Sensitivity analysis for minimization of input data dimension for feedforward neural network. In
Circuits and Systems, 1994. ISCAS'94., 1994 IEEE International Symposium on (Vol. 6, pp. 447-450). IEEE.



NPAIRS Workflow: Performance and reproducibility estimates
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Detection of Skin Cancer by Classification of Raman Spectra

Fig. 1.

Raman units

Examples of the NIR-FT Raman spectra of benign and malignant skin
lesions and tumors: BCC, MM, NV, and SK.
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Fig. 10. Sensitivity maps for the MM class. Dashed line indicates 95%
confidence interval. Sensitivity map seems more noisy than the BCC sensitivity
map in Fig. 9. Region marked A represents the CH™ vibrations in the lipids
and proteins around 2940 cm—* and region marked C reflects the amide 1 band
of proteins 16001800 cm—!,

DTU
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Sigurdsson, S., Philipsen, P.A., Hansen, L.K., Larsen, J., Gniadecka, M. and Wulf, H.C., 2004. Detection of skin cancer by classification of Raman
spectra. IEEE transactions on biomedical engineering, 51(10), pp.1784-1793.




EEG mind reading Mapping time-frequency response DTU

2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25-28, 2017, TOKYO, JAPAN

DEEP CONVOLUTIONAL NEURAL NETWORKS FOR
INTERPRETABLE ANALYSIS OF EEG SLEEP STAGE SCORING

Albert Vilamala®, Kristoffer H. Madsen"? and Lars K. Hansen’

{a) Wakefulness {b) Non-REM | (¢) Non-REM 2 (d) Non-REM 3

Fig. 1. Sensitivity analysis for subject 7. Top row shows characteristic sleep stage spectra: bottom row presents per-class
sensitivily maps.

oo
s = 4

The Journal of Neuroscience, June 15,2016 - 36(24):6583-6596 - 6583

Behavioral/Cognitive

Neural Markers of Responsiveness to the Environment in
Human Sleep

Thomas Andrillon,'-> Andreas Trier Poulsen,’ Lars Kai Hansen,’ Damien Léger,* and Sid Kouider!
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Figure 3.1: Before falling asleep subjects had to classify s word presented to
them through headphones every 6 to 9 soconds as cither snimals or objects.
This task allowed the mapping of each specific category with a specific motor
response. This induction of a category-response mapping just before the onset

Frequency (He)

1 s z
of sleep is believed to promote the maintenance the task-set even after the Time (=)

slecp cnset. Testing i ged the i towards sleep while

remaining engaged with the same task-sct. For cach subjoct one of two lists of (b) Z-score.

words was presented during wakefulness and the other list during sleep ensuring
actual abstract categorization rather than simple stimulus-response associations.
(Source: Sid Kouider)

Christian V Karsten (2012) Pattern Recognition in Electric Brain Signals- mind reading in the sleeping brain w./ Sid Kouider Paris. MSc Thesis DTU Informatics.
Andrillon, T., Poulsen, A.T., Hansen, L.K., Léger, D. and Kouider, S., 2016. Neural markers of responsiveness to the environment in human sleep. Journal of

Neuroscience, 36(24), pp.6583-6596.



Explain deep visual decisions — reducing uncertainty L
AEEregated methods

AGG-Posterior

Image . Salienc GuidedBackproj SmoothGad ; GradCAM

Challenge

hippopotamus

— 100+ proposals on how to
explain image classification
— Do not agree on what to explain!

®
£
E
[
£
]

Aims:

Aggregate to reduce model uncertainy
Evaluate by counterfactual (what would happen if the image was different?)

Rieger, L. and Hansen, L.K., 2019. Aggregating explainability methods for neural networks stabilizes explanations. arXiv:1903.00519.
Chang, C.H., Creager, E., Goldenberg, A. and Duvenaud, D., 2018. Explaining image classifiers by counterfactual generation (ICLR19).

13 | 24.01.2021 |



Epistemic /model uncertainty — consensus inference DTU

Individual explainability methods come at idiosyncratic
scales - non-parametric alignment of “gray scales”

Averaging, clipped and posterior weighted
ensemble aggregation

—Reduce variance and model uncertainty
—-Evaluation 1)- correlation with human annotations
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Figure 6. Averaged cosine similarity between human-assigned relevance and explanation methods reported on Inception(left), Xception
(middle) and VGG109 (right). Aggregated methods in green. Dashed line is the average over all methods.



Open problem: Evaluation - counterfactuals? LY
Gyoal et al. (2019) Users’ think in terms of counterfactuals -

"Given a query image A for which a vision system predicts class ¢, a counterfactual

visual explanation identifies how A could change such that the system would output
a different specified class ¢’ ”

What would have to change in image A to make the model predict Horned Grebe?

If looked more like

An image where the netwark
predicts Horned Grebe.

Goyal Y, Wu Z, Ernst ], Batra D, Parikh D, Lee S: Counterfactual Visual Explanations. In ICML 2019.




IROF: Evaluate explanations by simple counterfactuals DTU

Identify most relevant segment Reclassify by NN with segment greyed out Repeat consecutively

Existing approach “Pixel
flipping”

Saliency maps identify
important pixels - grey out
to understand how much
performance deteriorates Sy e SLEool baLoer oxsion

Table 2. Remaining class score after 50% of image segments grayed out. Lower is better

Grap-CAM 0.09 000 035+001 0224001
GUIDEDGRAD-CAM  0.09 £ 0.00 0.35+0.01 0.20%0.01
AGG-MEAN 0.08 =000 031001 0.14 =0.01
AGG-POSTERIOR 0.08 = 0.00 031001 0.14 %001
AGG-CLIPPED 0.14+001 045002 0274001

Here: .

Identify meaningful

(sub-)objects by image
segmentation

Grey out segments rather
than individual pixels

Class score

) Proponrltion of suegmentlg greyedmout

Rieger L, Hansen LK. IROF: a low resource evaluation metric for explanation methods. In Workshop AI for Affordable Healthcare at ICLR 2020, Addis Ababa, Ethiopia, 2020
Creager E, Goldenberg A, Duvenaud D: Explaining image classifiers by counterfactual generation ICLR19.




Attacks on explanations "Fairwashing”
— Exploit epistemic uncertainty

Original
Original image explanation
dell o= SXP

i

Fairwashing: the risk of rationalization
Aivodji et al. Proc ICML 2019.

“Fairwashing explanations with off-manifold T

=
—
—

i

Target Manipulated
explanation explanation Target image

[
detergent” Anders et al. Proc ICML 2020. o @
: | | [
Effective defence: J i
Exploit epistemic uncertainty ﬁf—_ ol -
Resilience by model averaging 3 e | | ¥
<|

L Rieger, LK Hansen. “A simple defense against adversarial attacks
on heatmap explanations.”

In proc ICML 2020 Workshop on Human Interpretability in ML (WHI)

17 | 24.01.2021 | DTU Compute, Technical University of Denmark



Conclusions — ML is not black box - yet much to do... DTU

Explainability is well established
v" Function visualization - quest for mechanisms

Decision level explanations — causality, counterfactuals

Model averaging can improve performance

v
v Quantification of uncertainty
v
v

Model averaging defends against fairwashing attacks

Many open problems

- Evaluation protocols?

- Explain with humans in the loop,
competences?, visualize uncertainty?

- True counterfactuals require causal models
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