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OUTLINE

Variance inflation in
PCA, kPCA, linear regression and SVMs

Explainability, uncertainty quantification
Spontaneous symmetry breaking in kernel reps
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High dimensions — small samples (D>>N)
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"HDLSS” high dimension, low sample size (Hall 2005, Ahn et al, 2007)
“Large p, small n” (West, 2003), “Curse of dimensionality” (Occam, 1350)
“Large underdetermined systems” (Donoho, 2001)

"Tll-posed data sets” (Kjems, Strother, LKH, 2001)
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Representation learning - factor models

Represent a datamatrix by a low-dimensional approximation,
eg. linear / subspace representation

TIME (t=1:N) TIME (t=1:N)
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X(i,0)= Y. AG,Kk)S(k,t)
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Unsupervised learning:

Factor analysis generative model

X = AS+E&,

p(x|A,0) = [ p(x| A,s,%)

p(x|A,s,X)=[22Z[ "% e

e~ N(O, Z) Source distribution:
PCA: ... normal
ICA: ... other
P, . IFA: ... Gauss. Mixt.
,U(S | 9)5618 kMeans: .. binary

—%(X—AS)T > (x—AsS) PCA: ¥

llllllllllll

2
o -1,

S known:
(1-A)1 sparse:
S,A positive:

GLM
SEM
NMF
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Hgjen-Sgrensen, Winther, Hansen,
Neural Computation (2002),
Neurocomputing (2002)
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Matrix factorization: SVD/PCA, NMF, Clustering

NMF
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Figure 1 Non-negative matrix factorization (NMF) leams a parts-based representation of
faces, whereas vector quantization (V@) and principal components analysis (PCA) leam
holistic representations. The three leaming methods were applied to a database of

m = 2,429 facial images, each consisting of n = 19 x 19 pixels, and constituting an
n > m matrix X Al three find approximate factorizations of the form V' == WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 % 7 montages, each method has leamed a set of

r = 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 > 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

Leaming the parts of objects hy

non-negative matrix factorization

Daniel D. Lee* & H. Sebastian Seung*t

* Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
+ Department of Brain and Cognitive Sciences, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139, USA

NATURE [VOL 401 |21 OCTORER 1999 | www. nature.com
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Variance inflation in PCA

Journal of Machine Learning Research 12 (2011) 2027-2044 Submitted 1/11; Published 6/11

A Cure for Variance Inflation in High Dimensional Kernel Principal
Component Analysis

Trine Julie Abrahamsen TIAB@IMM.DTU.DK
Lars Kai Hansen LKH(@IMM.DTU.DK
DTU Informatics

Technical University of Denmark
Richard Petersens Plads, 2800 Lyngby, Denmark
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Variance inflation in PCA

Lars Kai Hansen
Technical University of Denmark

Who shrunk the test set?
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Modeling the generalizability of SVD

e Rich physics literature on "retarded” learning

e Universality

— Generalization for a “single symmetry
breaking direction” is a function of ratio
of N/D and signal to noise S

— For subspace models-- a bit more
complicated -- depends on the
component SNR's and eigenvalue
separation

— For a single direction, the mean squared
overlap R? =<(uT,*u,)?> is computed
for N,D -> o

(aS*-1)/SA+aS) a>1/8

RZ
0 a<l1/S?

a=N/D S=1/¢" N.=D/S’

Hoyle, Rattray: Phys Rev E 75 016101 (2007)
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SINGLE SYMMETRY BREAKING DIRECTION (D=104)
I ——t—tt—t———0—9

OVERLAP W. SYMMETRY BREAKING DIR.

0 50 100 15 200 250 300
TRAINING SET SIZE (N)

N, = (0.0001, 0.2, 2, 9, 27, 64, 128, 234, 400, 625)
o = (0.01, 0.06, 0.12, 0.17, 0.23, 0.28, 0.34, 0.39, 0.45, 0.5)
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Restoring the generalizability of SVD

Now what happens if you are on the slope of
generalization, i.e., N/D is just beyond the
transition to retarded learning ?

SUBSAMBLING MOVIE-ACTOR NETWORK
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The estimated projection is offset, hence, future
projections will be too small!

...problem if discriminant is optimized for
unbalanced classes in the training data!

Lars Kai Hansen
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Heuristic: Leave-one-out

re-scaling of SVD test projections

Conventional 8VD
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Second GenSVD componert

Generalizable SVD
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Kjems, Hansen, Strother: "Generalizable SVD for
Ill-posed data sets” NIPS (2001)
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Re-scaling the component variances by

leave one out

Possible to compute the new scales by leave-one-out doing
N SVD’s of size N << D (..however scales like N4)
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Approximating LOO (leave-one-out in N3)

Let {,..., @y} be N training data points in a D dimensional input space
T T el
LN — ;I,‘i—r -+ :I:Jl"'!.f? uﬁf—]ﬁ LNy — "H.ﬁr_]ﬁ . ..Eh;r .
T T | T |

Uy 1IN =UN_| " Ly~ Uy Ly

Projection on N-1 samples scales like N2

T.J. Abrahamsen, L.K. Hansen. A Cure for Variance Inflation in High Dimensional Kernel Principal Component Analysis.
Journal of Machine Learning Research 12:2027-2044 (2011).
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Head-to-head comparison of
two approximation scheme

Adjusting for the mean overlap using
phase transition theory

R (aS*-1)/S1+aS) a>1/5"
0 a<l/S8?

a=N/D S=1/¢" N,=D/§’

Hoyle, Rattray: Phys Rev E 75 016101 (2007)

Adjusting for lost projection

T T T |
Uy_1 4 N = UN_1 LN S Uy Ly

Lars Kal Hansen
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Approximation

Approximation

o’ 05 0 0.5 : 05 0 05
LOO projection LOO projection

Approximating the leave-one-out (LOO) procedure. Here we simulate data with four
normal independent signal components, x = Zi:]nkuk + € of strengths (1.4,1.2,1.0,0.8,
embedded in i.i.d. normal noise € ~ N(0,6%1), with ¢ = 0.2. The dimension was
D = 2000 and the sample size was N = 50. In the four panecls we show the training
set projections (red crosses), the projections corrected for the theoretical mean overlap
(Hoyle and Rattray, 2007) (yellow squares) and the geometric approximation in Equation
(1) (green dots) versus the exact LOO projections (black line).

Lars Kai Hansen
Technical University of Denmark
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Specific to PCA? No...universality also in NMF, Kmeans

NMF PCA KMEANS

e Looking for universality by
simulation

- learning two clusters in
white noise.

OVERLAP

e Train K=2 component factor
models.

e Measure overlap between line
of sigth and plane spanned by
the two factors.

OVERLAP

Experiment
Variable: N, D
Fixed: SNR

Lars Kai Hansen
Technical University of Denmark
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Beyond the linear model:
Non-linear denoising and manifold representations

p(x0)

Pq‘P(XO)
‘f"(z)/mz) — Pyo(xo0)|?

TJ Abrahamsen, LKH. Sparse non-linear denoising: Generalization performance

and pattern reproducibility in functional MRI . Pattern Recognition Letters 32(15) 2080-2085 2011

Lars Kai Hansen
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Application to classification of high-dimensional data on manifolds

Training data Test data Renormalized test data
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The “cure”

Non-parametric histogram equalization
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>> [as,ia]=sort(a);
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Application to classification of high-dimensional data on manifolds

~ Test prior to scaling (learning “8 vs rest”)
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Variance inflation in linear regression

y=w'x+e=3" wis+e x~N(0,1)

Analytic learning curve 5

N 9 12'5 | © EXPERIMENT
~ . 2 ... Lo THEORETIICAL]
W = argmin E (yn — WTXn) % - o

W é

n=1 =

T.\2 :

G(N) = Eyx { Ex { (y = wyx) :

0 10 20 30 40 50 60

Fig. 1. Experimental and theoretical learning curves for the case D = 20 with ¢ = 0.1, ||wo||* = 1.
The theoretical result for N > D +1 is given in Hansen (1993). The sample size for the minimal error

(for N < D —1)is located at Ny, = [D — 1 — \/D(D — 1) V/Hw;'(:\:'] = 13. The results are based on
10000 simulated data sets.

[ (1= %) [[wol|®> + 525502 N <D -1,

G(N) =4 o D—1<N<D+1

\%02 N >D + 1.

Hansen, L. K. Stochastic linear learning: Exact test and training error averages. Neural Networks 6(3): 393-396 (1993)
Barber, D., D. Saad, and P. Sollich. Test error fluctuations in finite linear perceptrons. Neural computation 7(4): 809-821 (1995)



Variance inflation in linear regression

G(N)

GENERALIZATION ERROR

(1— %) [lwol [+ 5252=0? N <D-1,
00 D—-1<N<D-+1
N_1 2 N > D+ 1.
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Analytic learning curve 5
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Fig. 1. Experimental and theoretical learning curves for the case D = 20 with ¢ = 0.1, ||wo||*> = 1.
The theoretical result for N > D +1 is given in Hansen (1993). The sample size for the minimal error

(for N < D —1)is located at N, = [D — 1 — \/D(D — I]Vﬁg] = 13. The results are based on
10000 simulated data sets.
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Variance inflation in linear regression

N
W = 5., X K — x|
=TT, ‘?L-n-l n Xﬂlxn
n=1
W = Zm n—1 Xn (K )ﬂ ?ny?n
N
2 (T - 2
o (W Xn) =1/N g Y
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Test set variance
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Decision function mis-match in the SVM (MNIST)

G-mean = y/sensitivity - specificity

Original 0.8¢ ] 0.8
Renormalized .-“—‘—.“\'\'
0.94r 0.7 l 0.6
O.67 0.4
?9.93 :0_5- 0.2
it T
H £ 0.4} 0=
H0.92 il
= 0.3t 0.3
0.91 0.27 0.2
0.1t 0.1
0.9 ot 0
0 0.5 1 0 0.5 1 -0.5 0 0.5 1
o i3 Descision walue

Fig. 1. Mean performance measures 41 std as a function of the noise level for the USPS
data. The left and middle panels show the accuracy and the G-mean respectively. The
test accuracy is shown in red while the renormalized test accuracy is shown in gray.
The right panel shows an example of the histogram before and after renormalization
(for a noise level of o = 0.27).

T.]J. Abrahamsen, LKH: Restoring the Generalizability of SVM based Decoding in High Dimensional Neuroimage Data
NIPS Workshop: Machine Learning and Interpretation in Neuroimaging (MLINI-2011)

Lars Kai Hansen
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Decision function mis-match in the SVM (fMRI)

0.95! 5 _ _ x-X ' 0.95f .
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Fig. 2. Mean performance measures +1 std as a function of kernel hyperparameter
for the fMRI data. Higher values of v lead to more non-linear kernel embeddings. The
left and right panel shows the accuracy and the G-mean respectively. The dashed lines
correspond to the scheme where data with no stimuli are omitted, while the full lines
show the performance on the subsampled data. The test accuracy is shown in red while

the renormalized test accuracy is shown in gray. The black crosses indicate the optimal
kernel hyperparameter. Renormalization is seen to improve performance and notably
it leads to more non-linear optimal kernels as the optimal scale parameters chosen by

cross-validation are increased.
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Explaining machine learning is possible (and has been for some time...)

(probably) the first example... decoding PET brain scans (1994)
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Lar Lautrup, B., Hansen, L. K., Law, I., Mgrch, N., Svarer, C., & Strother, S. C. (1994). Massive weight sharing: a cure for extremely ill-posed problems.
In Workshop on supercomputing in brain research: From tomography to neural networks (pp. 137-144). “EARLY (but nor first) USE KERNEL TRICK"”
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Assume we have tuned ML performance — what does it do?
NPAIRS: Understanding ML performance & latent v’'ble uncertainty
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@ _ including SPM |

Model estimation

M)
Bl ) : 5
0] Model estimation
(Lot
s
pre M, Model Parameters SPM
e % 1 AT = g
"‘:j” g including SPM @
Image and Training Split
IDESiEI’I- Matrix LRI AL AL LD LD LR LA LL L ELEY [ELT
Data Set Test Split F
FJ"-E:*-'P:: —
P bt Prediction
¢ 9
r._i....'__ 39,0
[ Predicted
1.0 350
Sois "Design" Matrix
(2ol | 23l
[n’ 120
- - — -
m”rcd:ctlon Accuracy Estimate l

H Reproducibility Estimate H

NeuroImage: Hansen et al (1999), Lange et al. (1999), Hansen et al (2000),_Strother et al (2002), Kjems et al.
Lars (2002), LaConte et al (2003), Strother et al (2004), Mondrup et al (2011), Andersen et al (2014)

Techr Brain and Language: Hansen (2007)
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The sensitivity map & the PR plot

Neurolmage 15, 772-786 (2002) ®
doi:10.1006/nimg.2001.1033, available online at http://www.idealibrary.com on ||"=~|.

1.25

P77

The Quantitative Evaluation of Functional Neuroimaging Experiments: 100l

Mutual Information Learning Curves M'HW
U. Kjems,*" L. K. Hansen,* J. Anderson,t} S. Frutiger,}'§ S. Muley,§
0.75 S @
10

J. Sidtis.§ D. Rottenberg,T'$'§ and S. C. StrotherT'$'§
4
Q
0.50
ﬁ
3

*Department of Mathematical Modelling. Technical University of Denmark. DK-2800 Lyngby. Denmark; TRadiology Department.
0.25

§Netirology Department, and Y Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455;
and $PET Imaging Center. VA Medical Center, Minneapolis. Minnesota 55417

Mutual Information

[ { a10g p(six) \°
m, = ox

J . 0.00 0.10 0.20 0.30 0.40 0.50
J Pattern reproducibility

FIG. 3. Plot of scan/label mutual information versus reproduc-
ibility signal/noise for the four data sets, for varying numbers of
subjects in the training set. There were 2 labels/4 scans per subject
(balanced data set; Setup 1, Table 1) corresponding to the dashed
solid line in Fig. 4. We see that both measures indicate improved
performance of the model as the number of subjects increases.

The sensitivity map measures the impact of a specific
feature/location on the predictive distribution

Lars Kai Hansen
Technical University of Denmark
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Reproducibility of internal representations

Predicting applied static force
with visual feed-back

Split-half resampling provides unbiased estimate of reproducibility of SPMs

NeuroIlmage: Strother et al (2002), Kjems et al. (2002), LaConte et al (2003), Strother et al (2004), ...

Lars warmmamrsen

Technical University of Denmark
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Visualization of latent manifold de-noising:
The pre-image problem

Assume that we have a point of interest in feature space, e.g. a
certain projection on to a principal direction “®”, can we find its position

\\G//

z" in measurement space?
-1
z =¢ (9)

Problems: (i) Such a point need not exist, (ii) if it does - there is no
reason that it should be unique!

Mika et al. (1999): Find the closest match.
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=l ":‘ XX N Figure 1: The pre-image problem in kernel PCA denoising concerns estimating z from xg,
» . - . - - .
L 1 : s lr L L through the projection of the image onto the principal subspace in feature space, F.
- 2 - 2

Lars Kai Hansen Mika, S., Scholkopf, B., Smola, A., Milller, K. R., Scholz, M., Ratsch, G. Kernel PCA and de-noising in feature spaces. In

Technical University of Der NIPS 11:536-542 (1999).
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Regularization mechanisms for pre-image
estimation in fMRI denoising

L2 regularization on denoising distance

b~ - - -~ . p(x)

-

(’Q{Zl""'{---. PQ"I;(XO)
7 llp(z) = Pap(xo)||*

X F

Figure 4.10: The pre-image problem in kernel PCA de-noising concerns
estimating z from Xg, through the projection of the image onto the principal
subspace. Presently available methods for pre-image estimation lead to
unstable pre-images because the inverse is ill-posed. We show that simple
input space regularization, with a penalty based on the distance ||z — xo]|
leads to a stable pre-image.

L1 regularization on pre-image
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Figure 1: The pre-image problem in kernel PCA denoising concerns estimating z from xq,
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Optimizing denoising using the PR-plot: Sparsity, non-linearity
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Figure 2: Prediction/reproducibility plots using all scans for the single slice fMRI visual
block activation experiment. The GPS estimate when using a non-linear kernel are seen
to outperform all other estimates in terms of combined prediction and reproducibility
measures. Location in the upper right corner 1s preferred.

2 = argmin [|p(2) — Pre(xo)l[2 + Allz]le,
zeX

GPS = General Path Seeking, generalization of the Lasso method Jerome Friedman. Fast sparse regression and
classification. Technical report, Department of Statistics, Stanford University, 2008.

T.J. Abrahamsen and L.K. Hansen. Sparse non-linear denoising: Generalization performance and pattern

Lz reproducibility in functional MRI. Pattern Recognition Letters 32(15):2080-2085 (2011).
Technical university of Denmark
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Spontaneous symmetry breaking
Understanding symmetry is of theoretical and practical interest:

Alex Krizhevsky, Ilya Sutskever, and Geofrey E Hinton. Imagenet classication with deep convolutional neural
networks. In Advances in Neural Information Processing Systems 2012 - Cited by 56120

"Without data augmentation, our network suffers from substantial

overfitting, which would have forced us to use much smaller
networks.”

Latent variables —
/nvariant — supervised learning
equivariant — representation learning
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Technical University of Denmark

=
—
=

i



Symmetry breaking in kernel reps (GPLVM

Phase space: Initialization
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COIL 100 rotated objects
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kPCA on COIL

rotated objects
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Universal pattern of

symmetry breaking in KPCA on COIL
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PCA: TRAINING SET
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e \Variance inflation in PCA

Cure: Rescale std’s wofr
e Variance inflation in kPCA B
Cure: Non-parametric renormalization of component: ..

e Support Vector Machines:

In—line renormalization seems to enable
more non-linear classifiers in D>>N

o e
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e Kernel representations visualization is possible — uncertainty! ‘ \/L

 Need to understand the (lack of) symmetry of latent variable models
Is spontaneous symmetry breaking a “side effect™?
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