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area relevant in many applications, e.g., retrieval, navigation and organiza-
tion of information, automated information assistants, and e-commerce. This
paper discusses the use of unsupervised and supervised learning methods for
user behavior modeling and content-based segmentation and classi�cation of
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1. Introduction

Webmining is an increasingly important and very active research �eld which
adapts advanced machine learning techniques for understanding the complex
information ow of the world wide web (Thrun 00, Weigend 99). Web data
are fundamentally multimedia streams of text, sound, images, and various
database information. While optimal information retrieval, navigation or orga-
nization requires mining of all media modalities, this paper focuses on textmin-
ing and user behavior modeling.

Textmining (Hansen 00b, Isbell 99, Kaban 00, Kolenda 00, Landuaer 98)
is used to categorize text according to topic, to spot new topics, and in a
broader sense to create more intelligent searches, e.g., by WWW search en-
gines. Textmining proceeds by pattern recognition based on text features,
typically document summary statistics. While numerous high-level language
models for extraction of text features exists, simple summary statistics are still
preferred because they are compact representation and can be adapted auto-



matically and continuously, without costly manual intervention of language
expertise.

Modeling the user's behavior when navigating a web site is very relevant
in e-commerce applications (Cooley 99, Mobasher 99, Pei 00, Perkowitz 00,
Shahabi 97, Spiliopoulou 99, Yan 96). User modeling can be divided in three
levels of functionality: the �rst level concerns automatic segmentation of users
who display similar behavior. Second level concerns automatic classi�cation
of users using expert annotations of identi�ed user segments. The third, and
most elaborate level, involves interactive web pages continuously adapted to
the user's behavior. This paper addresses merely automatic segmentation.

Section 2. describes a probabilistic hierarchical clustering framework based
on the generalizable Gaussian mixture (GGM) model. In section 3. we discuss
the use of the GGM for supervised learning. Further, unsupervised learning
based on Independent Component Analysis (ICA) is presented in Section 4.
Section 5. presents webmining applications using the methods of Sections 2.{
4. covering: classi�cation of webpages, hierarchical segmentation of emails,
improved text segmentation using ICA, and user behavior segmentation.

2. Hierarchical Probabilistic Clustering

2.1. Generalizable Gaussian Mixture Model

The Gaussian mixture model is a very exible pattern recognition device, see,
e.g., (Ripley 96) for a review. The K component Gaussian mixture density of
a feature vector x of dimension d, is de�ned as

p(xj�) =
KX
k=1

P (k)p(xjk; �k) (1)
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where the component Gaussians are mixed with proportions
P

k P (k) = 1;
P (k) � 0, and �k � f�k;�kg is a parameter vector. The parameters are
estimated from a set of examples D = fxnjn = 1; � � � ; Ng. Traditionally
mixture densities are estimated using maximum likelihood (ML), e.g., through
various expectation-maximization (EM) methods (Ripley 96). The (negative
log-) likelihood cost function is de�ned by

SN (�) =
NX
n=1

� log p(xnj�) (3)

and b� = arg min� SN(�) are the estimated parameters. The objective of mod-
eling is to ensure that the generalization error, de�ned as the expected cost on
independent data,

G( b�) = Z
� log p(xj b�)p�(x) dx: (4)



is minimal. Here p�(x) denotes the \true" density.
The Gaussian mixture model is extremely exible and simply minimizing

the above cost function will lead to an \in�nite over�t"1. This solution is op-
timal for the training set, but unfortunately has a generalization error roughly
equal to that of the single component Gaussian model, as the singular com-
ponents have zero measure w.r.t. test data. This instability has lead to much
confusion in the literature and needs to be addressed carefully. Basically, there
is no way to distinguish generalizable from non-generalizable solutions if we
only consider the likelihood function. The only way to ensure generalizability
is to invoke the concept of generalization in the estimation procedure. The
most common remedy is to bias the distributions so that they have a common
shared covariance matrix, see e.g., (Hastie 96). In fact, classical EM algorithms
only work under this assumption. A more principled method is to invoke reg-
ularization in terms of priors in a Bayesian framework (Rasmussen 00).

Here we adopt the Generalizable Gaussian Mixture model presented in
(Hansen 00b) which combines three approaches to ensure generalizability. First,
we compute centers and covariances on di�erent resamples of the data set. Sec-
ondly, we make an exception rule for sparsely populated components in which
the covariance matrix defaults to the scaled full-sample covariance matrix.
Thirdly, we estimate the number of mixture components by the AIC-criterion
(Akaike 69, Hansen 96). The algorithm allows for individual component co-
variance matrices which enables a exible local metric in contrast to methods
assuming common covariance matrix, hence a global metric.

The Generalizable Gaussian Mixture algorithm is a modi�ed EM proce-
dure (Dempster 77) and is provided in Figure 1 for a �xed number of mixture
components, K.

2.2. Hierarchical Clustering

There are numerous contributions within hierarchical clustering (see e.g.,
(Ripley 96)). Here the focus is to construct a relatively simple agglomerative
hierarchical clustering using a probabilistic model which is based on the work in
(Szymkowiak 00). For recent approaches to full hierarchical probabilistic clus-
tering techniques the reader is referred to (Vasconcelos 99, Williams 00).

De�ne pj(xjk) as the conditional probability3 density of x for cluster Cjk
k = 1; 2; � � � ; K � j + 1 in layer j = 1; 2; � � � ; K of a hierarchy. Further de�ne
Pj(k) as the priors of the clusters (mixing proportions). At the most detailed
level j = 1, the density is modeled by the GGM described above, i.e., p1(xjk)

1It is easily veri�ed that the cost function has a trivial (in�nite) minimum at-
tained by setting �k = xk for k = 1; � � � ;K � 1, and letting the corresponding
covariance matrices shrink to �k = 0. The remaining K'th Gaussian is adapted to
the remaining N � K + 1 data points, with �K = (N � K + 1)�1

PN
n=K xn, and

�K = (N �K + 1)�1
PN

n=K(xn ��K)(xn � �K)
>.

3For notation convenience, we omitted the condition on the model parameters in
what follows.



Figure 1: Generalizable Gaussian Mixture Algorithm.

Initialization for K components

1. Compute the mean vector �0 = N�1P
n xn.

2. Compute the covariance matrix of the data set:
�0 = N�1

P
n(xn � �0)(xn � �0)

>.
3. Initialize �k � N (�0;�0).
4. Initialize �k = �0.
5. Initialize P (k) = 1=K.

Repeat until convergence

1. Compute p(kjxn) = p(xnjk)p(k)=
P

` p(xnj`)p(`) and as-
sign xn to the most likely component.

2. Split the data set in two parts2 D�, D�.
3. For each k estimate �k on the points in D� assigned to

component k.
4. For each k estimate �k on the points in D� assigned to

component k. If the number of data points assigned to
the k'th component, Nk, is less than d + 1, then �k  
(Nk�k +�0)=(Nk + 1).

5. Estimate P (k) as the frequency of assignments to com-
ponent k.

are Gaussian densities. At each consecutive level two clusters with minimum
distance are merged until we reach one cluster at level j = K. As distance
measure we suggest to use the symmetric Kullback-Leibler divergence4 between
the mixture components, as de�ned by

D(k1; k2) =
1

2

Z
p(xjk1) log
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dx+
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For layer j = 1 in which the cluster densities are Gaussian the distance can be
expressed as (Szymkowiak 00):
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When proceeding from level j to j + 1 suppose that clusters Cjk1 and Cjk2 are

merged. Then the merged density of cluster Cj+1
k at level j + 1 is a mixture

given by:

pj+1(xjk) =
Pj(k1)pj(xjk1) + Pj(k2)pj(xjk2)

Pj(k1) + Pj(k2)
(7)

Pj+1(k) = Pj(k1) + Pj(k2) (8)

4See e.g., (Ripley 96) for the classical Kullback-Leibler de�nition.



The remaining densities are unchanged.
At level 1 the expression for the distance in Eq. (7) is exact, while exact

calculation at other levels cannot be cast into a simple analytical form. Con-
sequently, we suggest to use a simple combination rule in which the distances
to a merged cluster is original distances weighted by the mixing proportions,
as in Eq. (8), i.e.,

Dj+1(k; `) =
Pj(k1)Dj(k1; `) + Pj(k2)Dj(k2; `)

Pj(k1) + Pj(k2)
(9)

where clusters Cjk1 ; C
j
k2

have been merged into Cj+1
k at level j, and ` indexes a

cluster at level j + 1.
Using a Bayes optimal decision strategy (assuming simple 0/1 loss function,

see e.g., (Ripley 96)), a speci�c training example xn is assigned to cluster k if

k = arg max
`

Pj(`jxn) = arg max
`

pj(xj`)Pj(`)PK�j+1
i=1 pj(xji)Pj(i)

(10)

If clusters Cjk1 ; C
j
k2
have been merged into Cj+1

k at level j, then

Pj+1(kjxn) = Pj(k1jxn) + Pj(k2jxn) (11)

Thus, all posterior cluster probabilities are easily computed from the level 1
posteriors P1(kjxn).

Once the hierarchy is constructed we want to determine cluster/level mem-
bership of new examples. For this purpose we chose the following criterion: If
Pj(kjx) = arg max` Pj(`jx) > � then x 2 Cjk, where mink P1(k) < � � 1 is a
prescribed threshold, e.g., � = 0:9. This corresponds to accepting that x is
assigned to a wrong cluster in with probability 0:1.

2.3. Interpretation of Clusters

Interpretation of clusters in the hierarchy is important for webmining applica-
tions. Suppose that each original example in our database is a set of elements
drawn from �nite number of possible elements (often large). Each example
could for instance be a html-document consisting of a number of elements,
i.e., words from a large vocabulary. The set of elements of each example is
encoded into the feature vector x. Basically two methods exist for a cluster
interpretation: The �rst consist in listing a number of representative examples
from the available training data set which are member of the cluster to be
interpreted. The second method consists in listing typical elements associated
with the cluster.

2.3.1. Prototype Examples

Representative examples of a speci�c cluster can be de�ned as the ones which
are most probable. Since p(xjk) is a probability density the values are not



directly comparable. Instead we compute the probability5

Q(t) = Prob(x 2 R); R = fx : p(xjk) < tg (12)

for all thresholds t. We aim at identifying the t-value corresponding to the
most probable example for the major part of the probability mass. This value
is found as tmax = arg maxtQ(t) � Qmax, where that Qmax is a high threshold,
e.g., 0:9. Practically, Q(t) is computed from the training data assigned to
cluster k, say Dk = fxn 2 Ckg, as follows: rank tn = p(xnjk), xn 2 Dk in
ascending order, t1 � t2 � � � � � tNk

, where p(xnjk) are model density values,
and Nk = jDkj is the number of example in Dk. Finally, let Q(tn) = n=Nk.
Prototype examples are then a number of high ranked examples having tn near
tmax.

2.3.2. Prototype Elements

In order to list representative elements associated with a cluster we start by
�nding most probable feature vectors from each cluster, basically using the
method described in the previous section. An large surrogate data set can
be generated by drawing Monte Carlo random samples from the estimated
Gaussian mixture. From these data typical feature vectors are those having t-
values for which Q(t) is su�ciently high. Finally, the generated feature vectors
are back-projected into original element space.

2.3.3. Novelty Detection

When the estimated density model is applied to new data there is a risk that
these can not meaningfully be described by the model; in other words, we need
to address the novelty problem. In line with recent work (Baker 99, Bishop 94,
Nairac 97, Basseville 93), we suggest a novelty detector based on total input
density p(x). The method described in Section 2.3.1. can be used to form a
Q(t)-function for p(x), see Eq. (12). We then set a low threshold Qmin and �nd
the corresponding tmin as tmin = arg mintQ(t) � Qmin. Finally, novel events
are detected as those having density values less than tmin.

3. Generalizable Gaussian Mixture Classi�er

If the feature vectors x are annotated by providing class labels, we are able
to perform supervised learning using the GGM model. Consider a data set
D = f(xn; cn) jn = 1; 2; � � � ; Ng where cn 2 f1; 2; � � � ; Cg is the class associated
with example n. The joint density of feature vectors x and class labels c is
p(x; c) = p(xjc)P (c), where p(xjc) is the class conditioned density and P (c) is
the marginal class probabilities. The classi�er is designed by adapting GGM's

5This idea relates to highest probability density regions (Box 92, Ch. 2.8).



to each class separately. Hence, the class conditional density can be written as

p(xjc) =
KcX
k=1

p(xjk; c)P (kjc) (13)

where P (kjc) and Kc are the mixture component probabilities and number
components used for class c, respectively.

Labels are assigned to a new data point in accordance with the optimal
Bayes classi�cation (under the 0/1 loss) rule by selecting the maximum poste-
rior probability, P (cjx) = p(xjc)P (c)=

PC
c=1 p(xjc)P (c).

3.1. Unsupervised-then-Supervised Gaussian Mixture Model

In (Thrun 00) the interplay between supervised and unsupervised learning
was discussed. To estimate the role of the labels for the GGM model �rst per-
form an GGM input density estimate p(x) =

PK
k=1 P (k)p(xjk). Next estimate

P (cjk) for each component k from the joint feature/label training data set as
Nck=Nk, where Nck is the number of data samples of component k assigned
class label c, and Nk is the number of data samples of component k. Finally,
estimate the conditional class probability by

P (cjx) =
p(xjc)P (c)

p(x)
=

KX
k=1

p(xjk; c)P (cjk)P (k)

p(x)
=

KX
k=1

p(xjk)P (cjk)P (k)

p(x)
:(14)

The classi�cation of examples using Eq. (14) can be compared to that of the
supervised GGM classi�er, illustrating the role of labels during training.

4. Independent Component Analysis

Independent Component Analysis is an unsupervised method which consider
the feature space as linear mixtures of statistically independent components/
sources, see e.g., (Lee 00) for an introduction and recent review. We will
employ a source separation based on the likelihood formulation suggested in
(Hansen 00a, Kolenda 00). An additional bene�t from deploying the likeli-
hood framework is that it is possible to discuss the generalizability of the ICA
representation. In particular the generalization error, de�ned as the expected
likelihood, is as a tool for optimizing the complexity of the representation.

De�ne the d�N feature data matrix,X = fxing = [x1;x2; � � � ;xN ], where
d is the feature space dimension and N is the number of examples. The ICA
model takes the form,

X = AS + E (15)

where A is a general mixing matrix of dimension d �M , S is a source data
matrix with dimension M �N consisting of M � d independent sources, and



E is the d�N noise matrix. The noise is supposed to be zero mean and i.i.d.
Gaussian distributed with a common variance,

p(Ej�2) =
1

(2��2)dN=2
exp

0@� 1

2�2

dX
j=1

NX
n=1

"2j(n)

1A : (16)

The M � d number of sources source signals are assumed to be stationary and
mutually independent, and to obey a parameter free probability density

p(S) =
MY
i=1

p(si) =
1

�NM
exp

 
�

NX
n=1

MX
i=1

log cosh si(n)

!
: (17)

where S> = fs1; s2; � � � ; sMg and si = [sin; si2; � � � ; siN ]
>. The likelihood of

ICA model is given by,

L(A; �2) = p(XjA; �2) =
Z
p(X �ASj�2)p(S)dS (18)

where p(X �ASj�2) = p(E j�2) is the noise distribution. A Maximum Likeli-
hood algorithm for estimatingA, �2 and the source data matrix S is described
in (Hansen 00a, Kolenda 00).

5. Experiments

5.1. Classi�cation of Web Pages

The focus is on understanding the textual content of a web page based on
statistical features. Here we consider the single word statistics; frequency of
word occurrence, hence disregarding order and association. Word frequencies
have been used in the vector space model (Luhn 58, Salton 89) for decades. In
practice words which high and low frequencies have little discriminative power.
High frequency words are typically function words, e.g., is and the. Such words
are removed by comparing the document with a list of stop words, i.e., a dic-
tionary of common words. Also low frequency words are removed since they
do not represent any common meaning among a number of web pages. In
addition, we will consider to remove words with common stem, i.e., words like
worked and working are represented by their stem work. Typically the number
of words/terms after such parsing is still a very large compared to the number
of documents available for learning. Since learning algorithms often fail to
generalize in high dimensions there is a need for e�cient and robust means
for data reduction and feature extraction. Latent Semantic Indexing (LSI)
(Deerwester 90) is a method to generate a reasonable low dimensional feature
vector, and is further believed to handle polysemy and synonomy problems.
Polysemy refers to the problem that words often have more than one mean-
ing, whereas synonomy refers to the problem of di�erent words with similar
meaning.



LSI is based on the T �N term-document matrix, Z = [z1; � � � ; zN ], where
zn represent term frequency of document n, i.e., zin is the probability of term
i in document n.6 The term frequencies are projected on a orthogonal set of
eigen-histograms found by singular value decomposition (SVD). LSI can aid
interpretation by visualizing group structure in the set of documents, typically
by scatter plots of the term histograms on a reduced set of salient eigen-
histograms. Another virtue of this representation is that it can be used as
a dimensionality reduction scheme. First we remove the mean value �zn =
zn � bu, where bu = N�1PN

n=1 zn. Then the SVD is given by �Z = UDV > =PR
i=1 uiDi;iv

>

i , where the T � R matrix U = fUmig = [u1;u2; � � � ;uR], with
R being the rank7 of Z, and the N � R matrix V = fVnig = [v1; v2; � � � ; vR]
represent the orthonormal basis vectors (i.e., eigenvectors of the symmetric
matrices XX> and X>X, respectively). D = fDi;ig is a R � R diagonal
matrix of singular values ranked in decreasing order. Many singular values will
be small and are regarded as artifacts or noise. Consequently, the subspace
associated with these should be omitted while maintaining the latent semantic
structure. The projection onto the d dimensional latent subspace is given by

X = fU> �Z, fU = [u1;u2; � � � ;ud].
The CMU WebKB repository (CMU homepage) consist of 2240 web pages

labeled according to the following categories: Course (24:7%), Faculty (21:6
%) Project (15:7%), Student (38:0%). A term list of 13071 words that oc-
curred in two or more documents was de�ned without screening for stop-
words. Latent semantic analysis is performed using feature dimensions of
d = 5; 20; 30. In Figure 2 learning curves for the GGM classi�er Section 3.
were estimated by cross-validation. Data are randomly split 10 times into a
test set of (Ntest = 1240) and training sets of increasing sizes, Ntrain = 100{
1000. Learning curves were estimated as the averaged test error as a function of
d. A generalization cross-over, as function of the dimension, is noticed, i.e., the
larger dimensional representations requires more samples to generalize. The
proposed GGM classi�er achieves classi�cation rates and learning curves com-
parable to those found in (Thrun 00). The GGMmodel, however, achieves this
performance based on the full 13071 dimensional term-frequency showing the
strength of Latent Semantic Analysis representation. This allows for handling
more complex webmining problems and also avoiding the selection of terms as
in (Thrun 00). The interplay between supervised and unsupervised learning
was further addressed in (Thrun 00). To estimate the role of the labels for the
GGM model, we have carried out a similar learning curve experiment for the
unsupervised-then-supervised Gaussian mixture model Section 3.1. It turns
out that learning is much less e�cient for the unsupervised-then-supervised
procedure indicating signi�cant class overlap.

6The probabilities as normalized so that
P

i zin = 1:
7Since T � N , then for independent documents the rank is R = N .



Figure 2: Learning curves for supervised learning of the generalizable Gaus-

sian mixture classi�er using WebKB dataset.
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5.1.1. Novelty Detection

Since the GGM classi�er produces conditional probabilities we obtain in this
way a clue to the \internal" con�dence. The magnitude of the probabilities
is determined by proximity of the decision boundary of the closest competing
class. The overall test error rate give a clue to our con�dence in the prob-
abilities obtained from the system. However, when applied to new data the
possibility exist, of course, that the new data can not in a meaningful way be
assigned to any of the classes in the training data. In other words we need
to address the novelty problem by identifying outliers in p(x) as described in
Section 2.3.3. Figure 3 shows Q(t) based on training and a test set gathered
from the documents above. We note that the test data are not rejected at
reasonable Q-levels. The third curve is obtained from a third independent set
of documents Department not related in an obvious way to the training and
test sets. This data is declared novelty at levels below Qmin = 5%.

5.1.2. Web Navigation

A possible application is a navigation tool that can assist the user by com-
bining the supervised and unsupervised classi�cation schemes. At �rst the
supervised part uses a list of labeled web pages, as typically can be found in
a bookmark/favorite list ordered in folders for which the folder name serves
as label for the underlying web pages (links). The GGM classi�er classi�es
new pages into known bookmark labels. Documents not qualifying w.r.t. the
current list of topics are detected as novel and using unsupervised GGM clus-
tering of the pages and evaluating representative keywords for each mixture
component, we are able to get an overall description of the document. Key-
words are generated by back-projecting cluster centers into term-frequency
space and then selecting most probable terms. Using e.g., Other/Misc pages
of the WebKB data set 40% of the pages in this group are detected as novel,



Figure 3: Novelty detection using web 173 pages from the Department group of
the WebKB data set. The model has d = 30 dimensions and both the training

and test sets contained 1120 documents. Threshold t for p(x) is selected for

Q = 5%.
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and these were subsequently clustered into 4 new groups. Keywords suggested
the 4 groups could be interpreted as: Places, Spare time, Computer systems and
Multimedia as indicated by Table 1.

Table 1: Keywords associated with novel WebKB group Other/Misc.

Multimedia Computer sys. Spare time Places

eros up page mississippi

random readme webteam detroit

np cache visits university

u incoming funny military

player msdos uva saint

rami�cations directory today macon

gif windows museum williamsburg

format mac totals rolla

slide unix robins aeronautical

modulo wie total louis

5.2. Email Segmentation using Hierarchical Probabilistic Clustering

Consider hierarchical segmentation of emails. A database of 1443 English
emails categorized in three groups conference, jobs, and spam were collected.
Only the text contained in subject and body was considered. As in Section 5.1.
we performed LSI using a stopword list of 571 words, removed words which
occurred less than 4 times, and �nally we discarded emails which contained less
than 3 words. Only one word for words with a common stem was maintained
by discarding 14 di�erent endings. After preprocessing we had 1442 emails
divided into 721 for training and 721 for testing. Each email was represented
by it's term-histogram of 10440 terms. Using a latent subspace of d = 20



components8 resulted in GGM models with optimal number of clusters in level
1 in the range 6{13. We chose to illustrate a model consisting of K = 13
clusters. Performing hierarchical clustering on top of the GGM, as described
in Section 2.2., results in a dendogram hierarchy depicted in lower left panel
of Figure 4. Numbers refer to cluster numbers, e.g., 15 is the merging of
clusters 11 and 14. The confusion matrix computed from training examples
for hierarchy levels 1 and 11 are in shown in the upper panels of Figure 4. It is
noted that at level 1 the conference category is mainly represented by cluster
7, jobs by cluster 6 but also 4 and 7, and �nally spam by cluster 3 and 5. At
level 11, corresponding to three clusters, cluster 13 and 21 mainly represent
spam whereas cluster 23 represents both conference and jobs. Consequently, the
unsupervised hierarchical clustering is not able to distinguish these categories.
Also notice that cluster 6 and 7 which largely represent these categories are
merged at an early level into cluster 19. When �ltering test set emails through

Figure 4: Dendogram for hierarchical email clustering and distribution of test

set emails among clusters.
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8A method for selecting the subspace dimension based on generalization error in
described in (Szymkowiak 00).



the hierarchy we assign a speci�c email to the cluster at which the posterior
probability is above 0:9, according to Section 2.2. The right lower panel of
Figure 4 shows the fraction of test set emails ending up in di�erent clusters.
We notice that several email �rst obtain a meaningful interpretation at high
level in the hierarchy (i.e., cluster number larger than 13).

Keywords are generated by back-projecting most probable features from
each cluster at any level in the hierarchy as outlined in Section 2.3. The back-
projection intro term-frequency space is given by �z = eUx, where x is a prob-
able feature vector and eU is the 1440 � 20 projection matrix. The keywords
are then found as the most likely terms, i.e., highest values9 of �z.

Table 2: Keywords for email cluster hierarchy in Figure 4.

Cluster

1 card mail

2 call university free degree

3 free mail cd video site digital

4 click href

5 free mail business internet call

6 research university science position cognitive

7 inform workshop paper research submission conference visualization university

8 font

9 mail address university

10 mail free font address inform call research click fat card site

11 free mail font

12 font click mail html free fat

13 fat adult

14 free font mail html card click call adult

15 free font click

16 free call font mail university click

17 font

18 free mail address site software cd video

19 inform workshop research university paper submission visualization conference science

20 inform research university workshop paper science address submission visualization conference

21 free mail video cd address digital gratis europa site software gaming

22 research inform http click university paper workshop conference science submission address card

23 card inform research workshop university mail paper submission click visualization

24 card mail

25 adult card fat click check mail remov

5.3. Text Segmentation using ICA

Independent component analysis might be viewed as an extension to the LSI
model for textmining. The principal component projections eU are interpreted
as eigen-term-histograms since each vector eui is a term-histogram. The eigen-
term-histograms are by construction orthogonal, i.e., 8 i 6= j : eui � euj = 0.
However, ICA provides a more exible representation as the orthogonality
restriction is not imposed, i.e., the ICA eigen-term-histograms embodied by
the columns of the mixing matrix are not orthogonal. First we deploy a SVD

9Due to using a low-dimensional subspace of d = 20, �z + bu typically does take
values in the range [0; 1] nor is

P
i �zi+ bui = 1. In principle, we could feed the values

trough a softmax-function (Ripley 96), which, however, will not change the ranking.



(see Section 5.1.) on the zero mean term-document matrix �Z = UDV > with
maximal subspace dimension R = N , as the trivial null-space is discarded
(Lautrup 94). In this subspace we perform ICA (see Section 4.) to obtain the
decomposition �Z = UAS, where U is T � N , A is N � d, and S is d � N .
The columns of U �A are the d eigen-term-histograms, and S = fsing are the
d independent components (IC's), i.e., features.

A simple technique for clustering in ICA feature space is to separate along
the diagonal of the IC's10, however, for the purpose of visualization and better
understanding we perform a logistic discrimination corresponding to feeding
the IC's through a softmax operation: �in = exp(sin)=

Pd
i=1 exp(sin). More

elaborate clustering methods involving ICA might be suggrsted. ICA might be
viewed as a preprocessing technique (as SVD in LSI) to provide a representative
subspace in which probabilistic clustering could be carried out.

The IC's are interpreted by associated keywords. Since column i of U �A
is the eigen-term-histogram associated with i'th IC, keywords are generated
by identifying the most likely (high-value) terms.

Based on the work in (Kolenda 00) we demonstrate the capabilities of ICA
using the MED data set which is a commonly studied collection of abstracts
from medical publications (Deerwester 90). After removing low and high fre-
quency words, the term-document matrix consisted of N = 124 documents
from the �rst �ve groups of the MED data set, and the number of terms
were T = 1159. We used ten-fold cross-validation by randomly splitting data
into Ntrain = 104 documents for training and Ntest = 20 for testing. Evaluating
the generalization error showed that best generalization is obtained when using
four independent components. Figure 5 compares LSI (or principal component
analysis PCA) and ICA. While the group structure is visible in the principal
component plots, only the group structure is aligned with the IC's, indicating
that we are able to cluster along the IC directions. Table 3 shows the confu-
sion matrix calculated from the available 124 documents when comparing the
performance of ICA to document labels as well as keywords for each of the IC
components. It turns out that the keywords very well describes the groups.
Groups 3 and 4, which are merged into IC 3, both are abstracts concerning
various aspects of lung and bronchial studies, and seem to be the most close
w.r.t. content.

5.4. User behavior modeling

User behavior modeling is an important aspect of e-commerce systens. The
current examples is based on our work reported in (Christiansen 00) which
studied an e-commerce company selling articles via the web. Web log-data
was recorded for half a year and resulted in 31700 sessions for which all user

10The IC's are merely determined up to scaling and permutation. In practice, if
required the sign of the components are reversed to ensure that mean value of each
component is positive.



Figure 5: Analysis of MED data set labeled in 5 groups.
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actions where mapped into 60 unique events. Events could be pressing a buy
button, selecting a certain group of articles, or following a link to a another
web page. Each session is thus a variable length sequence of events from the
60 element event-alphabet B = f1; 2; � � � ; 60g, B = jBj = 60. In general, it
might be di�cult to map the details of the web server log �le into a unique
event space unless the logging has been designed with this purpose in mind.

The log-on to the site could be done in two ways, either as member login
with personal password, or as a guest assigned a pseudo user-id. Each ses-
sion was numbered in succession, i.e., repeated log-on from the same user is
mapped to di�erent session numbers. Using the industry standard, sessions
are interrupted and the user automatically logged-o� after 30 minutes of no
activity.

Too short sessions will not reect a real interest in the web site (Yan 96).
Hence, the minimum session length was set to four events, corresponding to
the shortest way into the \shopping area" from the opening site. A total of
4339 sessions remained of which 1089 randomly was selected as test set, leaving
3250 sessions for training.

Let s`n 2 B represent session n consisting of Ln events, ` = [1;Ln]. As
in (Yan 96), we deploy histogram statistics representation of the sessions by
computing the frequency of events: zin = L�1n

PLn
`=1 �(i�s`n), where i 2 B, �(�)



Table 3: Confusion matrix and keywords using ICA for analysis of MED data

set.

Group

IC 1 2 3 4 5
Keywords

1 0.97 0.00 0.00 0.00 0.00 lens crystallin

2 0.00 1.00 0.00 0.04 0.00 oxygen tension blood cerebral pressure arterial

3 0.03 0.00 1.00 0.92 0.08 cell lung tissue alveolar normal

4 0.00 0.00 0.00 0.04 0.92 fatty acid glucose blood free maternal plasma

is the Kronecker delta-function, and Z = [z1; � � � ; zn] is denoted the histogram
matrix. It is possible to use second order statistics, i.e., co-occurrence matrices.
The B � B co-occurrence matrix for session n and displacement � is de�ned
as,

cij(n; �) = (Ln � 1)�1
Ln�1X
`=1

�(i� s`;n) � �(j � s`+�;n); 8i; j 2 B (19)

and expresses the frequency of events i and j in distance � of the sequence.
Co-occurrence features have be used in (Faisal 99, Perkowitz 00) and will be
further addressed in (Christiansen 00). In this study we merely address the
use of the histogram and also neglect to include the duration of a session as
a feature (Zaiane 98). In order to obtain a compact feature space we apply
singular value decomposition (see p. 9) of the zero mean B � N histogram
matrix �Z = UDV > de�ned by �zn = zn � bu, where bu = N�1PN

n=1 zn.
Then we project onto the d-dimensional latent subspace spanned by the largest

singular values as given by X = fU> �Z, where fU = [u1;u2; � � � ;ud].
Repeated training of the unsupervised GGM model using d = 30 features

resulted in that the most generalizable model contained K = 17 components
(clusters). Figure 6 shows the obtained analysis of cluster 1. The upper left
panel shows the event sequences of the 40 sessions belonging to cluster 1,
and are quite similar for the �rst few instances in the sequence. The upper
right panel shows event histograms, and obviously most sessions use a rather
limited number of events. In the lower panel the interpretation of cluster 1
is illustrated. The lower left panel shows the histogram of most the probable
session, whereas the lower right panel shows the back-projection of the cluster
center to histogram space. There is a signi�cant resemblance indicating that
the cluster can be interpreted by events (ordered in decreasing importance) as:
35; 27; 8; 22; 23. From the actions associated with these events it seems that
the cluster represents users attempting to register as a new members, while
none of the users are able to get to the shopping web page. Other clusters
can be interpreted using this technique. For instance, cluster 3 represents
members who �rst login as guests, secondly choose a goods pick-up store, and
then browse for while. However, almost 200 out of 708 in this cluster decide to
quit after having watched the entry shopping web page. Cluster 15 represents



a group of users which are not able to use the site correctly. They try use
a search function before selecting preferred goods pick-up store, which turns
out to be impossible. This way cluster 15 reveals a simple bug in the web site
design.

Figure 6: User behavior modeling. Analysis of cluster 1.
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6. Conclusion

This paper discussed the use of unsupervised and supervised methods for anal-
ysis and interpretation of world wide web data. A hierarchical probabilistic
clustering scheme based on the generalizable Gaussian mixture (GGM) model
was described. In addition, methods for interpretation of the identi�ed clus-
ters were presented. The use of the GGM for supervised and unsupervised-
then-supervised classi�cation was also discussed. Finally, we described an
independent component analysis (ICA) for unsupervised learaning. We suc-
cessfully applied supervised GGM to classi�cation of web pages, hierarchical
probabilistic clustering for email segmentation, and ICA for text segmentation.
Moreover, we successfully applied the unsupervised GGM for segmentation of
user's behavior when shopping on a web site.
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