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Abstract

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization.
Unlike previous approaches, we model the ordinal nature of the data and take a principled
approach to incorporating priors for the hidden variables. Two algorithms are presented for
inference, one based on Gibbs sampling and one based on variational Bayes. Importantly,
these algorithms may be implemented in the factorization of very large matrices with
missing entries. The model is evaluated on a collaborative filtering task, where users have
rated a collection of movies and the system is asked to predict their ratings for other
movies. The Netflix data set is used for evaluation, which consists of around 100 million
ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that
the suggested model outperforms alternative factorization techniques. Results also show
how Gibbs sampling outperforms variational Bayes on this task, despite the large number
of ratings and model parameters. Matlab implementations of the proposed algorithms are
available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Keywords: Large scale machine learning, collaborative filtering, ordinal regression, low
rank matrix decomposition, hierarchial modelling, Bayesian inference, variational Bayes,
Gibbs sampling

1. Introduction

Matrix factorization is a highly effective technique for both predictive and explanatory data
modeling. An observed data set is represented as an M × N matrix matrix of results, R,
where rows represent the observation number and columns represent the variables of interest.
The most common factorization is the bilinear decomposition R = U⊤V + ǫ, where U is a
K ×M matrix, V is a K ×N matrix, and ǫ is a noise term. U and V represent the values
of explanatory variables which, when multiplied and added, give a predictor of the values
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in R. If entries in R are missing, then U and V can be used to give predictions of their
value. When U is observed the problem becomes one of multiple regression.

In many applications, the values of R will be further constrained. Although standard
matrix factorization may still be used, an approach which explicitly models these constraints
will often be more effective. In cases where the entries in R, U and V are non-negative, non-
negative matrix factorization algorithms have frequently improved performance. Examples
of this improvement include tasks such as text mining and spectral analysis (Berry et al.,
2007). This paper studies problems with a slightly different set of constraints. Entries in
R are restricted to a finite ordered (ranked) set of values, and the task is therefore called
ordinal matrix factorization.

Ordinal matrix factorization has several possible application areas. When the low-rank
factors are constrained so that both rows and columns can simultaneously cluster – say when
the entries in R, U and V are all binary – matrix factorization provides a suitable framework
for bi-clustering and pattern discovery of gene-expression data (Zhang et al., 2009, Shen
et al., 2009). An example of the use of non-binary ordinal values in R is collaborative
filtering. In this application, the rows of R correspond to items, its columns represent
viewers or users, and its entries represent user ratings. U then provides the latent factors
for a particular item, while V provides weights for how these factors affect a particular
user’s preferences.

Much of the relevant research on ordinal matrix factorization has been restricted to
special cases. In binary matrix factorization, one suggested approach has been to constrain
non-negative matrix factorization algorithms (Zhang et al., 2009, Shen et al., 2009). U

and V are chosen to minimize the sum of squares error,
∑

ij ‖Rij − (U⊤V)ij‖2, subject to
the constraints Uij ,Vij ∈ {0, 1}. The extra constraints, however, result in the NP–hard
discrete basis problem (Miettinen et al., 2008). This approach also lacks a simple extension
to the more general case of ordinal matrix factorization. In the case of ordinal regression,
which is when U and R are both observed, several algorithms have been suggested of which
generalized linear models are one classic example (McCullagh and Nelder, 1989, Chu and
Ghahramani, 2005). However, these algorithms have typically been limited to regression
and have not been extended to the general factorization case.

There are two main approaches which have been applied to inference in the general
ordinal matrix factorization task. The first is to define a loss function and optimise over
U and V using maximum margin matrix factorization (Srebro et al., 2005). The second
is to build a probabilistic model representing the matrix factorization and then to perform
statistical inference to compute any desired values (Lim and Teh, 2007, Salakhutdinov and
Mnih, 2008b, Stern et al., 2009).

This paper extends the latter approach by constructing a principled statistical model
for ordinal matrix factorization, by combining the hierarchical model of Salakhutdinov and
Mnih (2008a) with the ordinal regression likelihood of Chu and Ghahramani (2005). This
is done through the inclusion of an additional hidden matrix H = U⊤V + ǫ, which is then
used as an unobserved input to an ordinal regression model to obtain R. Contributions of
the paper are:

• An extended probabilistic model for ordinal matrix factorization, in which non-linearities
are introduced through the ordinal likelihood function. The hyperparameters express
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a rich model, but allow the factors in U and V to remain coupled through shared
hyper-priors.

• Two efficient algorithms, from different approaches to statistical inference, are derived
and compared for the model. The first is a Gibbs sampling algorithm, which samples
from the posterior distribution of all unobserved parameters. The second is a varia-

tional approach, in which the posterior distribution is approximated with a simpler
surrogate distribution.

The model is tested on the Netflix data set, which is a collection of around 100 million
movie ratings for M = 17, 770 movie titles and N = 480, 189 users. The matrix is sparse in
that many of the movie-user pairs have no rating in the R matrix. Performance is computed
by estimating missing values and computing the root mean-squared error (RMSE) on a held-
out collection of ratings. The model is shown to outperform or be on a par with alternative
matrix factorization approaches on this metric, which is the standard for evaluations on this
particular data set. Note, however, that alternative approaches to collaborative filtering
are available, such as factorizations that also regress against user and item features (Ansari
et al., 2000, Stern et al., 2009), those using user rating profiles (Marlin, 2004), restricted
Boltzmann machines (Salakhutdinov et al., 2007), nearest neighbours (Bell and Koren,
2007), and non-parameteric models (Lawrence and Urtasun, 2009, Yu et al., 2009a, Zhu
et al., 2009). The best performance on this data has been achieved by averaging ensembles
of many different models (Koren, 2009, Töscher et al., 2009, Piotte and Chabbert, 2009).

Besides the improvements obtained in RMSE, the model has other advantages over
alternative matrix factorization techniques. Most importantly, the model is not restricted
to providing only the expected value of missing entries in R, and is able to provide a
probability distribution over the possible discrete values. While RMSE cannot be improved
using this extra information, other metrics such as the mean absolute error (MAE) would
benefit from it. A further benefit of a Bayesian approach is that recommendations include
a predictive variance. Practical systems can exploit this to only recommend items that it
is confident a user will like.

The remainder of the paper is organized as follows: Section 2 describes the proposed
hierarchical model, and its relationship with alternatives. Sections 3 and 4 then describe
how efficient inference may be preformed using Gibbs sampling and variational Bayes, re-
spectively. An evaluation of the framework is provided in Section 5, which describes the
results on the Netflix data set. Directions for improving the core model are presented in
Section 6.

2. Probabilistic model

The hierarchical Bayesian model for ordinal matrix factorization employed here comprises
of three main elements: 1. An ordinal regression likelihood function which maps a latent
variable h to probabilities for the possible discrete ranked values r in such a way that
the ordering is preserved; 2. A probabilistic model for h in terms of a low rank matrix
factorization; 3. Hierarchical prior distributions for the low rank matrices. Each of these
elements are discussed separately below, and combined in the graphical model presented in
Figure 1.
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2.1 Ordinal regression likelihood

Ordinal regression arises when the possible observed values in R are ranked. For example,
in a collaborative filtering task an item with a five-star rating is regarded as superior to one
with a four-star rating, which in turn is better than one with a three-star rating. In the
true sense of the word there may be no definition of “distance” between ranked values; we
can merely say that class A is preferred to class B, which is preferred to C, etc. (Stevens,
1946). Models for ordinal regression should therefore reflect both the discrete nature and
natural ordering of the data. Such models hold an advantage over models which merely
transform the problem into a regression problem, as the probability of a certain discrete
ranked value can be computed.

Without loss of generality, the possible ranked values may be labeled r = 1, . . . , R. For
the remainder the paper, the different values are simply called ranks. The real line is now
partitioned into a number of contiguous intervals with boundaries br,

−∞ = b1 < b2 < . . . < bR+1 = +∞ ,

such that interval [br, br+1) corresponds to discrete rank r. Instead of directly modeling the
ranks, the ranks are modeled in terms of a hidden variable f from a corresponding region
of the real line. If f falls in rank r’s interval, we know with full certainty that rank r is
observed, and the conditional probability of r is therefore

p(r|f) =

{

1 if br ≤ f < br+1

0 otherwise
= Θ(f − br) − Θ(f − br+1) ,

where Θ(·) is the step function, i.e. Θ(·) = 1 for a non-negative argument and zero otherwise.
Uncertainty about the exact location of f can be modelled by for example p(f |h) =

N (f ;h, 1). Averaging over f in p(r, f |h) = p(r|f)p(f |h) gives

p(r|h) = Φ(h − br) − Φ(h − br+1) , (1)

where Φ(x) =
∫ x
−∞

N (z; 0, 1) dz is the cumulative Gaussian density or probit function.

When only two ranks are present, (1) becomes the familiar binary classification likelihood.1

Another interpretation of this likelihood function is to view p(r ≥ r′|h) = Φ(h − br′), so
that

p(r = r′|h) = p(r ≥ r′|h) − p(r ≥ r′ + 1|h) .

Let rmn denote the ratings for rows m = 1, . . . ,M and columns n = 1, . . . , N . The ordinal
regression model maps continuous latent variables hmn in H to probabilities p(rnm|hmn).
The probability of observation rmn can also be written as

p(rmn|hmn) =
∏

r

[

Φ(hmn − br) − Φ(hmn − br+1)
]

I[rmn=r]
, (2)

where the indicator function I[·], which is one for a true argument and zero otherwise, picks
out the r = rmn term. The likelihood defined over a training set of ranks D = {rmn|(m,n) ∈
1. Other sigmoid functions, like the logit σ(x) = 1/(1 + e−x), can equally be chosen. The probit function

is especially convenient for tractable inference, as will become evident in following sections.
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tr.set} is

p(D|H) =
∏

(m,n)

p(rmn|hmn) ,

where the product is over all observed ratings (m,n).

In this work the boundaries br are kept fixed and not included in the above likelihood.
However, one may extend the parameter space to, for example, include a set of boundaries
bm for each item m. The br terms could also be learned from data, as they will contain
information about the relative frequency in which ratings will appear.

2.2 Low rank matrix factorization

Collaborative filtering is possible if the latent correlations between items and users can be
captured in hmn. One choice towards this aim is to model hmn with a linear model

hmn = u⊤
mvn + ǫmn ,

with ǫmn being the residual and um and vn being factors of length K associated with
item m and user n (Hofmann, 1999, Rennie and Srebro, 2005). When K is smaller than
M and N the linear model becomes a low rank decomposition H = U⊤V + ǫ in matrix
form. Predictions for test cases (m′, n′) also rely on the dot product u⊤

m′vn′ in low rank
decomposition models, and this is equally true in the Bayesian approach adopted in this
work.

A computationally convenient choice for modelling ǫmn is as a Gaussian random variable
ǫmn ∼ N (0, γ−1), so that the prior distributions for all the latent variables share a variance
γ−1 with

p(hmn|um,vn, γ) = N (hmn ; u⊤
mvn, γ−1) . (3)

As will be seen in Section 5, the choice of γ and K plays a key role in the performance of
the model.

2.3 Hierarchical Bayesian priors

A standard Bayesian approach to modeling uncertainty in model parameters U, V, and γ,
is by specifying hierarchical priors for each. If the priors are in the exponential conjugate
family of distributions for each parameter, each of the conditional distributions required for
Gibbs sampling is analytically tractable, and the updates needed for variational Bayesian
inference follow a similar form. When enough data observations are present, inference
is largely robust with respect to the actual choice of hyperparameters that govern the
hierarchical priors, as the data likelihood typically dominates the prior.

Let each of the M item factors have a Normal distribution

p(um|µu,Ψu) = N (um;µu,Ψ−1
u ) , (4)

so that they are conditionally independent given the shared mean and covariance. The mean
and precision matrix (inverse covariance) is modelled with a conjugate Normal-Wishart prior

p(µu,Ψu) = N (µu;µ0, (β0Ψu)−1)W(Ψu;W0, ν0) . (5)
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The Wishart distribution

W(Ψ;W, ν) ∝ |Ψ|(ν−K−1)/2 exp(−1

2
tr[W−1Ψ])

over symmetric positive definite matrices is parameterized with a scale matrix W and
ν degrees of freedom. A completely analogous model is used for the user factors. The
hierarchical prior structure on U and V, as specified here, is the same as that used in the
Bayesian probabilistic matrix factorization model of Salakhutdinov and Mnih (2008a).

The inverse variance parameter γ is non-negative and is modelled with its conjugate
Gamma distribution

p(γ; a0, b0) = Γ(γ; a0, b0) ,

where Γ(γ; a, b) ∝ γa−1 exp(−γ/b). The hyperparameters {β0,W0, ν0} and {a0, b0} have to
be specified by the user.

Model summary. The joint distribution of data and model parameters

θ = {H,U,V, γ,µu,Ψu,µv,Ψv} ,

using the definitions in Equations (2) to (5), is

p(D|θ)p(θ) =
∏

(m,n)

p(rmn|hmn) p(hmn|um,vn, γ) · · ·

∏

m

p(um|µu,Ψu) ·
∏

n

p(vn|µv,Ψv) · · ·

p(µu,Ψu) p(µv,Ψv) p(γ) .

Predictive distribution. If each of the possible observed values, r, are arbitrary labels,
say A, B, and C, the probability p(r|D) obtained in the model gives the probability for
each possible output label. In the case when the actual observed value is numeric, it may
be preferable to obtain other statistics as well. The point estimate r̂ that minimizes the
expected squared error E(r̂) = (r̂ − rtrue)

2, for instance, is the expected prediction for r,

r̂ = 〈r〉 =

R
∑

r=1

r p(r|D) =

R
∑

r=1

r

∫

p(r|θ) p(θ|D) dθ . (6)

Since the evaluation of Section 5 uses a RMSE, the above average r is used in that section.
When a model’s performance is judged by the absolute error E(r̂) = |r̂− rtrue|, the optimal
point estimate r̂ would be the median of p(r|D).

Using the likelihood in (1), the summation over r for constant θ parameters

R
∑

r=1

r p(r|θ) =

R
∑

r=1

Φ(hmn − br) − R Φ(hmn − bR+1)

=

R
∑

r=1

Φ(hmn − br)
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Figure 1: Graphical model for factor model Bayesian hierarchy as it is described in the
main text.

shows that only the marginal distribution p(hmn|D) is needed to make predictions. We can
further integrate hmn out explicitly to show that

R
∑

r=1

r p(r|um,vn, γ) =
R
∑

r=1

Φ

(

u⊤
mvn − br
√

1 + γ−1

)

. (7)

This expression is then averaged over p(um,vn, γ|D) to make predictions. The following sec-
tions give two approaches to computing this average, either by sampling from the posterior
parameter density with Gibbs sampling, or by approximating the parameter posterior by a
“simpler” distribution that allows the (approximate) average to be analytically tractable.

Model interpretation. In (7) it is shown that the rating probability depends on the
dot product u⊤

mvn − br in Φ(·). The dot product allows the model to be interpreted as
a linear classification problem over a binary matrix when R = 2, with similar interpreta-
tions for larger R or other likelihood functions. Each item factor um can be viewed as a
classifier’s “weight vector”. Classifier m then classifies the user factors as “data points”
vn to its associated class rankings rmn. Figure 2 illustrates the binary matrix case, with
b = (−∞, b2,+∞) and b2 = 0.

In the model both the M weight vectors um and the N data points vn are unobserved and
can therefore be freely placed (according to their prior) in R

K to give high probability to the
data point labels. If Π(n) denotes the set of items rated by user n, then each vn is associated
with multiple labels rmn for m ∈ Π(n). The sets of labels Π(n) therefore co-constrain and
correlate the placement of um and vn, giving rise to their posterior distribution.

The interpretation presented here has a dual view where there are N classifiers with
weight vectors vn, and M data points um. Each point um is then associated with a set of
ordinal labels rmn for all n ∈ Ω(m), where Ω(m) indexes the users that rated item m.
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v1

r11 = 1
u1

u⊤
1 v1 − b2 < 0

r12 = 2
v2

r13 = 2

v3
u1

u2

v1

v2

r13 = 2, r23 = 1

v3

r14 =?, r24 = 2
v4

Figure 2: A visual interpretation of ordinal matrix factorization, in this case for binary
matrices. Viewer factors vn are interpreted as “data points” with multiple labels
rmn – possibly one for each item m – that are linearly classified with the item
factors um as “weight vectors”. Both um and vn can be freely moved to give high
probability to the data point labels. A dual interpretation switches the roles of
um and vn.

It is also possible to give the hierarchical model an interpretation as a low rank ap-
proximation to the item-to-item (or equivalently user-to-user) based collaborative filtering.
In item-to-item collaborative filtering, as for example employed by Amazon (Linden et al.,
2003), the frequency of pairs of items that are bought by the same customer are recorded.
Such a correlation matrix is also implicitly estimated in the present model, as can be seen
by considering the joint prior distribution of a latent item vector for one user h = U⊤v + ǫ

upon marginalizing the user factor v and ǫ:

p(h|U,µv,Ψv, γ) = N
(

h ; U⊤
µv, U⊤Ψ−1

v U + IMγ−1
)

.

U⊤Ψ−1
v U + IMγ−1 thus serves as a low rank approximation to the latent item-to-item

covariance.

3. Gibbs sampling

Gibbs sampling is a MCMC method that sequentially samples from the conditional dis-
tributions of the model (Geman and Geman, 1984). Under some mild conditions – the
Markov chain must be both aperiodic and irreducible – the samples produced will be from
the posterior distribution (Robert and Casella, 2004). This section presents a Gibbs sampler
in Algorithm 1, along with the conditional distributions that it requires. Apart from sam-
pling for the latent variables hmn, all the Gibbs updates are standard conjugate exponential
updates.
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Factors. The conditional distribution for each item factor um is Gaussian,

um ∼ N



um;Σm



Ψuµu + γ
∑

n∈Ω(m)

hmnvn



 ,Σm





Σm =



Ψu + γ
∑

n∈Ω(m)

vnv
⊤
n





−1

,

where Ω(m) is the set of users that rated item m. Notice that the distribution for factor m
only requires knowledge of γ and the variables directly connected with m: {(vn, hmn|n ∈
Ω(m)}. This suggests the order of the updates in Algorithm 1, where the latent variables
are sampled for when needed and not stored in memory. A similar update, which relies on
Π(n), the set of items rated by user n, exists for user factor vn.

Latent variables. Sampling the conditional for the latent variable

p(hmn|rmn,um,vn, γ) ∝ p(rmn|hmn) p(hmn|um,vn, γ)

requires one evaluation of a unit interval random number, one random Normal number,
two evaluations of Φ and one of Φ−1. When the likelihood function is a step function, the
required Normal random number can be avoided. To derive the sampler we introduce the
“noise-free” latent variable

Φ(h − b) =

∫

N (f ;h, 1)Θ(f − b) df

(see Albert and Chib, 1993). For any m and n, which is omitted here for brevity, the joint
marginal distribution of r, f , and h, given µ = u⊤v and γ, is

p(r|f) p(f |h) p(h|µ, γ) =
[

Θ(br+1 − f) − Θ(br − f)
]

N (f ;h, 1)N (h;µ, γ−1) . (8)

The density f, h|r, µ, γ can be sampled from in two steps, f |r, µ, γ and h|f, µ, γ. The distri-
bution f |r, µ, γ is a truncated Normal

p(f |r, µ, γ) =
N (f ;µ, 1 + γ−1)

[

Θ(br+1 − f) − Θ(br − f)
]

Φmax − Φmin

with Φmax = Φ

(

br+1−µ√
1+γ−1

)

and Φmin = Φ

(

br−µ√
1+γ−1

)

. A sample can be drawn from

p(f |r, µ, γ) using the cumulative distribution

f = µ +
√

1 + γ−1 Φ−1
(

Φmin + rand (Φmax − Φmin)
)

, (9)

where “rand” gives a uniform random number between zero and its argument. Numerically,
the Φ−1 step should be handled with care, as discussed in Appendix A. The desired sample
is obtained from:

p(h|f, µ, γ) = N
(

h ; (f + γµ)/(1 + γ), (1 + γ)−1
)

.
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Algorithm 1 Gibbs sampling

1: initialize U, V, µu, Ψu, µv, Ψv, γ
2: repeat

3: for items m = 1, . . . ,M in random order do

4: sample hmn|rmn,um,vn, γ for each n ∈ Ω(m)
5: sample um|hmn,vn, γ,µu,Ψu

6: end for

7: for users n = 1, . . . , N in random order do

8: sample hmn|rmn,un,vm, γ for each m ∈ Π(n)
9: sample vn|hmn,um, γ,µv,Ψv

10: collect statistics for γ: ∆n =
∑

m∈Π(n)(hmn − u⊤
mvn)2

11: end for

12: sample µu|U,Ψu and Ψu|U
13: sample µv|V,Ψv and Ψv|V
14: sample γ|H,U,V using b−1 = b−1

0 +
∑

n ∆n

15: until sufficient samples have been taken

Normal-Wishart and Gamma. For the Normal-Wishart prior, µu and Ψu are sampled
from

µu,Ψu ∼ N (µu;µ, (βΨu)−1) W(Ψu;W, ν) ,

where

µ =
β0µ0 + Mu

β0 + M

β = β0 + M

W−1 = W−1
0 +

β0M

β0 + M
(u − µ0)(u − µ0)

⊤ + MS

ν = ν0 + M

S =
1

M

∑

m

(um − u)(um − u)⊤

u =
1

M

∑

m

um .

Samples for µv and Ψv can be drawn in the similar way. For the Gamma distribution γ is
sampled from

γ ∼ Γ(γ; a, b) , a = a0 +
|D|
2

,
1

b
=

1

b0
+

1

2

∑

(m,n)

(hmn − u⊤
mvn)2 .

Pseudo code. The pseudo code for the Gibbs sampler is given in Algorithm 1. The
initial samples are usually discarded as a “burn-in” stage, and, together with the number
of samples used, are discussed in Section 5. In practice, the algorithm’s implementation
should make use of an efficient data structure which stores the data twice, such that the
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ratings in the sets Ω(m) and Π(n) can easily be accessed. With the minor modification of
replacing each occurrence of hmn with rmn, the sampler will sample from a model with a
Gaussian likelihood instead of an ordinal regression one. For the Gaussian likelihood each
of the for-loops can be completely parallelized. To parallelize the ordinal regression code,
one needs to sample all the latent variables hm, (m,n) ∈ tr.set before each of the for-loops.
This computation can also be performed in parallel. The algorithm may thus be made
highly efficient on modern high memory GPUs and multi-core CPUs.

4. Variational Bayes

An alternative to Monte-Carlo estimates, such as those obtained in the previous section, is
to use a parametric approximation. The posterior distribution, p(θ|D), is approximated by a
simpler distribution, q(θ), which is used for further inference. A mean field approximation is
often used, meaning that the approximating distribution is assumed to factorize. Variational
Bayes (VB) is one popular algorithm for obtaining this approximation (Jordan et al., 1999).
At each stage in the algorithm, one of the approximating factors is chosen, all other factors
are fixed and the algorithm minimizes the Kullback-Leibler divergence KL(q(θ)‖p(θ|D)) by
varying the given factor. The parameters used in obtaining this optimum will depend on
statistics from the fixed factors.

In the case of the model used in this paper, a tractable mean field approximation is

q(θ) =
∏

(m,n)

q(hmn)
∏

m

q(um)
∏

n

q(vn) q(µu,Ψu) q(µv,Ψv) q(γ)

with the item and user factor variational distributions becoming Gaussian q(um) = N (um; 〈um〉,Σm)
and q(vn) = N (vn; 〈vn〉,Ξn). In this section angular brackets are used to denote an av-
erage with respect to the variational distribution. The factorized approximations for the
hierarchical parameters follow the prior’s Normal-Wishart form with

q(µu,Ψu) = N (µu;µuVB
, (βuVB

Ψu)−1)W(Ψu;WuVB
, νuVB

) ,

with a similar prior q(µv,Ψv), while q(γ) is chosen as a Gamma density q(γ) = Γ(γ; a
VB

, b
VB

).
As will be clear in the following, the variational distribution for hnm is not needed explic-
itly because online computation of the first and second moments are sufficient for updating
other variational distributions. The variational parameters to be kept track of are therefore
〈um〉, 〈Σm〉, 〈vn〉, and 〈Ξn〉 for all m and n, and all parameters subscripted with “VB”.

In the case of the mean field approximation, the algorithm for performing the iterative
VB updates has the same structure as Algorithm 1, replacing all sampling steps with updates
of sufficient statistics. Hence the pseudo-code is not repeated. One can show that the
required updates are as follows:
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Factors. The full update for each of the item factors is

q(um) = N (um; 〈um〉, Σm)

〈um〉 = Σm

[

〈Ψuµu〉 + 〈γ〉
∑

n∈Ω(m)

〈hnm〉〈vn〉
]

Σm =

(

〈Ψu〉 + 〈γ〉
∑

n∈Ω(m)

(Ξn + 〈vn〉〈v⊤
n 〉)
)−1

,

with 〈Ψuµu〉 = 〈Ψu〉〈µu〉 = νuVB
WuVB

µuVB
. As is true for the Gibbs sampler, similar

updates to the one above exist for the user factors, vn.
When either M or N is large, memory constraints may not allow an entire covariance

matrix to be stored for each q(um) and q(vn). In this case Σn and Ξn can be constrained
to be diagonal matrices such that q(um) =

∏K
i=1 q(umi), for example, factorizes completely.

Under a Normal-Wishart prior the updates will take a slightly different form. With q(umi) =
N (umi; 〈umi〉,Σmi) they are

Σmi =

(

〈Ψu〉ii + 〈γ〉
∑

n∈Ω(m)

(Ξni + 〈vni〉2)
)−1

〈umi〉 = Σmi

{

〈Ψuµu〉i + 〈γ〉
∑

n∈Ω(m)

〈vni〉
(

〈hnm〉 + · · ·

〈umi〉〈vni〉 − 〈u⊤
m〉〈vn〉

)

+ 〈umi〉〈Ψu〉ii − 〈u⊤
m〉〈Ψu〉i

}

.

In the above update 〈Ψu〉i is used to indicate column i of 〈Ψu〉, and 〈Ψu〉ii diagonal element
(i, i). The notation 〈umi〉〈vni〉 − 〈u⊤

m〉〈vn〉 is equivalent to −∑j 6=i〈umj〉〈vnj〉, while the

notation 〈umi〉〈Ψu〉ii − 〈u⊤
m〉〈Ψu〉i expands to a similar expression.

Latent variables. The mean and variance of hmn are determined when needed in other
updates from

q(hmn) ∝ p(rmn|hmn) · · ·

exp

(

〈

log p(hmn|um,vn, γ)
〉

q(um) q(vn) q(γ)

)

∝ p(rmn|hmn)N (hmn; 〈u⊤
m〉〈vn〉, 〈γ〉−1) .

Define µ = 〈u⊤
m〉〈vn〉, and let γ be short for 〈γ〉, and N (z) short for N (z; 0, 1). If br and

br+1 are the boundaries associated with rmn, and zr = (µ − br)/
√

1 + γ−1, the explicit
expressions for 〈hnm〉 and 〈h2

nm〉 are

〈hmn〉 = µ +
γ−1

√

1 + γ−1

N (zr) −N (zr+1)

Φ(zr) − Φ(zr+1)

〈h2
mn〉 = 2µ〈hmn〉 − µ2 + γ−1 · · ·

− γ−2

1 + γ−1

zr N (zr) − zr+1 N (zr+1)

Φ(zr) − Φ(zr+1)
.

12



Appendix A gives the asymptotic forms that should be used when zr or zr+1 is sufficiently
small or large.

Normal-Wishart and Gamma. The variational parameters for q(µu,Ψu) are updated
with

µuVB
=

β0µ0 + M〈u〉
β0 + M

βuVB
= β0 + M

W−1
uVB

= W−1
0 +

β0M

β0 + M

(

〈u〉 − µ0

)(

〈u〉 − µ0

)⊤

+ MS

νuVB
= ν0 + M

S =
1

M

M
∑

m=1

{

Σm +
(

〈um〉 − 〈u〉
)(

〈um〉 − 〈u〉
)⊤
}

〈u〉 =
1

M

M
∑

m=1

〈um〉 ,

while the parameters of q(µv,Ψv) follow a similar update. The updates for the parameters
of q(γ) are

a
VB

= a0 +
|D|
2

b
VB

=
1

b0
+

1

2

∑

(m,n)

[

〈h2
mn〉 − 2〈hmn〉〈u⊤

m〉〈vn〉 +
〈

u⊤
mvnv

⊤
n um

〉 ]

=
1

b0
+

1

2

∑

(m,n)

[

〈h2
mn〉 − 〈hmn〉2 +

(

〈hmn〉 − 〈u⊤
m〉〈vn〉

)2
· · ·

+ tr[ΣmΞn] + 〈u⊤
m〉Ξn〈um〉 + 〈v⊤

n 〉Σm〈vn〉
]

.

When Σm and Ξn are diagonal matrices, the update scales linearly with K.

5. Evaluation

The proposed model is evaluated by testing its predictive performance on the Netflix data
set. The data set contains around 100 million ratings from N = 480, 189 users on M =
17, 770 movie titles. Each rating is a number of stars 1 to 5, and is used as the ranked
observation at the relevant point in R. The amount of data for particular users and movies
is varied, as some users rated fewer than ten movies, while others took the time to rate up
to a few thousand movies. A test or “qualifying” set of almost three million user–movie
pairs for which the ratings are withheld. These (withheld) ratings are taken from the most
recent ratings in the period over which the data was collected. Algorithms are benchmarked
by their RMSE computed over an unknown half of the test set.
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γ Gibbs γ VB

K 0.08 0.09 0.1 inferred 0.1 inferred

50 0.8959 0.8958 0.8961 0.8970 0.8986 0.8983
100 0.8935 0.8930 0.8928 0.8943 0.8987 0.8989
200 0.8927 0.8917 0.8913 0.8934 0.9005 0.9021

Table 1: RMSE on the Netflix qualifying set for the hierarchical model, using Gibbs sam-
pling and VB for inference. The same results are plotted in Figure 3.

5.1 Hyperparameter settings for the Netflix data.

The first hyperparameters which must be chosen are the boundaries for the different ranks.
In this work the boundaries were set to be equidistant with boundaries (b1, . . . , b6) =
(−∞,−6,−2, 2, 6,∞), although any other equidistant choice would lead to the same re-
sult after an appropriate re-scaling of the remaining parameters. Although learning the
scaling between the b’s would reflect the relative frequency of particular ratings appearing
in the data, it is not included in this work.

The precise choice of the hyperparameters of the Normal-Wishart prior for the mean and
variance of the factors, N (µu;µ0, (β0Ψu)−1)W(Ψu;W0, ν0), is not crucial as the copious
amounts of data for learning will override any reasonably weak prior. To reflect this, the
mean of the mean prior is set to µ0 = 0, the mean-precision coupling parameter is set
to β0 = 1, the precision matrix is set to the identity matrix W0 = I, and the degrees of
freedom reflect the dimensionality ν0 = K + 1.

The most critical parameter in the problem is γ, the inverse variance of the h latent
variable distribution. This parameter largely determines the degree of fitting to the training
data. As an initial choice a0 = 10 and b0 = 10−2 were used in the Gamma distribution
prior, corresponding to the prior p(hmn|um,vn, γ) in (3) having an expected variance of
〈γ−1〉 = 1/[(a0 −1)b0] = 9. The motivation for this choice is that it roughly gives a baseline
expected RMSE of

√

〈γ−1〉/δb = 3/4, which is substantially below the Netflix prize goal.
When these parameter settings were used in Gibbs sampling a K = 50 model, samples for
γ converged to around 0.119 with very small fluctuations, since it is well-determined by the
large amount of data. It transpired that keeping γ fixed at a value ∼ 0.08 − 0.1 somewhat
improves the test error performance. This can be ascribed to the fact that the training
and qualifying data are not sampled from entirely the same distribution. The qualifying
set contains more recent ratings and there is a substantial upward drift in the ratings over
time.

The inclusion of the hierarchical prior in the model plays a role in the model’s predictive
accuracy. Gibbs sampling with γ = 0.1 and a hierarchical prior (K = 50) gives a RMSE of
0.8961 on the Netflix quiz set. Removing the hyper-priors by additionally keeping Ψu, µu,
Ψv, and µv fixed at their mean values gives a RMSE of 0.9091.
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Figure 3: RMSE on the qualifying set as a function of K for different γ-settings. The four
lower lines are for Gibbs sampling and the two upper lines for VB. The same
results are given in Table 1.

5.2 Performance results

The hidden ratings in the Netflix test set were inferred using Gibbs sampling and VB for
a number latent dimensions, K = 50, 100, 200, and γ settings γ = 0.08, 0.09, 0.1, and one
setting in which γ is also inferred. The results are summarized in Table 1 and Figure 3.
When the latent factor dimensionality K is increased, a higher precision γ gives better per-
formance. The Gibbs-sampled results provide further evidence that proper regularization in
models with more parameters than the data set size |D| is possible with Bayesian averaging
(Neal, 1996).

Effect of likelihood and support. When the results are compared to the Gaussian-
likelihood factor model of (Salakhutdinov and Mnih, 2008a), the ordinal likelihood gives
some improvement (compare for example the 0.8958, 0.8928, and 0.8913 RMSE for K =
50, 100 and 200 to their Gaussian likelihood’s 0.8989, 0.8965 and 0.8954 RMSE for K =
60, 150 and 300).

However, one of the advantages of using an ordinal likelihood instead of a Gaussian
is that the model provides an estimate of the probability for each possible rating. This
advantage is not evaluated by the RMSE metric, but does become evident when using
alternative metrics such as the mean absolute error (MAE), the empirical mean of |r̂−rtrue|.
Figure 4 plots the two metrics when using both the ordinal and Gaussian likelihood. The
results are grouped according to the movie support in order to analyse the effect of the
number of movies on predictions.

As expected, the figure shows that the ordinal likelihood results in a larger improvement
when evaluated using the MAE. The largest improvement is obtained on movies with few
ratings, presumably because there are less averaging effects to help the Gaussian model.
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Figure 4: RMSE and MAE as a function of the movie support using ordinal and Gaussian
likelihoods. The movies are grouped by ⌊log |Ω(m)|⌋. The estimates are obtained
on the Netflix qualifying set, using Gibbs-sampled K = 50 models.

Figure 5: Predictive uncertainty
√

〈r2
mn〉 − 〈rmn〉2 of the qualifying set points (dots) as a

function of the movie- (left) and viewer-support (right). The dark lines show a
windowed average (window size 1000).

Interestingly, both models achieve best results on movies with low support. One explanation
for this may be that the movies are only being watched by a handful of connoisseurs who
tend to rate them similarly. As the support increases the metrics both deteriorate at first
and then improve as the extra data improves the estimates.
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Figure 6: The samples for six of the five million model parameters required for a “small”
model with K = 10. The samples for the first three components of u3 for movie
3, i.e. u13, u23, and u33, are shown at the top. Movie 3 had Ω(3) = 2011 ratings.
The samples for the first three components of v3 are shown at the bottom.Viewer
3 rated Π(3) = 97 movies. The overlaid lines indicate a windowed average over
20 samples.

Predictive variance. The effect of averaging over the posterior can be visualized by
plotting the predictive uncertainty

√

〈r2
mn〉 − 〈rmn〉2 for each withheld movie–user entry

(m,n) in the qualifying set as a function of the “support”. The “movie support” is defined
as the number of viewers |Ω(m)| for a particular movie m in question. Figure 5 shows
the movie- (top) and viewer support (bottom). There is a clear trend that the uncertainty
decreases with the support, and, barring movies m with |Ω(m)| . 50, correlates with the
empirical errors in Figure 4.

Gibbs sampling and burn-in. The Gibbs sampler converges fast in terms of prediction
accuracy. (As an example, the samples for the first three components of a user and movie’s
latent vectors with K = 10 are illustrated in Figure 6.) This paper used a burn-in of
20 updates of all parameters starting from random initial values, and collected posterior
statistics for another 180 updates. An additional 180 steps lead to a performance increase
of around 0.0005 RMSE.

The comparison between Gibbs sampling and variational Bayes on such a large task
gives rise to several conclusions that are applicable to other similar settings (factor models
with relative high noise levels). VB and Gibbs have the same computational complexity per
update as identical matrix operations dominate the update of variational and conditional
distributions. Variational inference for the smaller factor sizes (K = 50) showed promising
results, but unfortunately overfitted for larger models. VB might, like penalized likelihood
models, be able to achieve better performance with careful parameter tuning, but as this is
time consuming for large problems Gibbs sampling can generally be recommended.
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Alternative and similar approaches. There exists a large number of collaborative
filtering approaches in the machine learning literature that are all evaluated on the Netflix
data set. They vary greatly in nature and purpose: some focus on runtime complexity;
some aim to be general, while other solutions are tailored to peculiarities of the Netflix
data. Table 2 provides an overview of the RMSE scores available for some models.2 Even
though results of matrix factorization methods are not reported for the same K-setting, a
comparison of the RMSE scores provides an overview of the diversity of available techniques.

There are approaches that strongly resemble this work. In Table 2, the Matchbox system
of Stern et al. (2009) also employs an ordinal likelihood function, and can additionally regress
against user and item features. Most other systems require a Gaussian likelihood: Porteous
et al. (2010)’s BMFSI also regresses against user and item features, with the addition of
Dirichlet process mixture priors on um and vn. Another mixture is introduced in MMMF
(Mackey et al., 2010), where a user–item bias is added to u⊤

mvn. The bias is obtained by
combining a discrete “user cluster” and “item cluster” assignment; this captures one of a
fixed number of possible predispositions towards liking or disliking each item, irrespective of
the static latent factor parameterization. Salakhutdinov and Mnih (2008a) Gibbs-sample a
hierarchical model with a Gaussian likelihood, while Lim and Teh (2007) make a variational
approximation to the parameters’ posterior distribution. The addition of a local neighbour-
based correction term to predictions obtained from global matrix factorization improves
predictions on the Netflix test set; this is illustrated by Takács et al. (2009).

The best results in Table 2 are given by non-parametric extensions, where Zhu et al.
(2009) and Yu et al. (2009a) present a flexible generalization of low-rank matrix factorization
to an infinite relational function. Not only are correlations between the components (factors)
of um explicitly learned, but also correlations between all items.

6. Conclusion and outlook

This paper has proposed a hierarchical model for ordinal matrix factorization. A minimal
model was used to keep the message as clean as possible, although the results could plausibly
be improved by blending with other models, as was shown by (Bell et al., 2007), and by
taking temporal effects into account (Koren, 2009, Töscher et al., 2009). Some ideas that we
are currently investigating are to include biases in the model hmn = u⊤

mvn+am+bn+ǫmn; to
adapt the parameters of the ordinal likelihood function (there is no reason to a priori believe
that an equidistant setting for b is the best); to generalize the Normal-Wishart priors to a
mixture of Normal-Wisharts to capture more subtle factor dependencies (Porteous et al.,
2010).

One important shortcoming of the model is made particularly evident by Figure 3. In the
figure, the pre-specified settings of the noise parameter are shown to outperform the inferred
γ. This may be because the inferred γ will be highly affected by the most popular movies,
where the distribution of ratings may well be more concentrated. The movies with fewer
ratings may be exactly the type which polarize opinion, leading to a higher variance. An
important extension would therefore be to let the the noise parameter be movie dependent
γ → γm.

2. Only “single model” results are reported here. The best Netflix results are achieved through a weighted
combination of many diverse models.
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Method Reference RMSE

Cinematch Netflix 0.9514
PMF Salakhutdinov and Mnih (2008b) 0.9170
PMF-VB Lim and Teh (2007) 0.9141
Matchbox Stern et al. (2009) 0.914
RBM Salakhutdinov et al. (2007) ∼0.907
BPMF Salakhutdinov and Mnih (2008a) 0.8954
MMMF Mackey et al. (2010) 0.8929
NPCA Yu et al. (2009b) 0.8926
OMF This work 0.8913

BRISMF Takács et al. (2009) 0.8904
BMFSI Porteous et al. (2010) 0.8875
BSRM Zhu et al. (2009) 0.8874
NREM Yu et al. (2009a) 0.8853

Table 2: RMSE on the Netflix qualifying set for a variety of models: Probabilistic Matrix
Factorization (PMF); PMF with Variational Bayes (PMF-VB); Matchbox (ordi-
nal likelihood PMF with expectation propagation and VB factor graph messages);
Restricted Boltzmann machines (RBM); Bayesian PMF (BPMF); Mixed member-
ship matrix factorization (MMMF); Nonparametric principal component analysis
(NPCA); Ordinal matrix factorization (OMF); Biased regularized incremental si-
multaneous matrix factorization (BRISMF); Bayesian matrix factorization with
side information (BMFSI); Bayesian stochastic relational model (BSRM); Non-
parametric random effects model (NREM).
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Such modifications can be implemented straight forwardly in Gibbs sampling and should
not substantially change convergence times. A final extension is to incorporate additional
information from the test set, which doesn’t provide additional ratings, but reveals the
identities of some other movies seen by certain users.

Appendix A. Asymptotics of the error function

Some care is needed to obtain numerically stable samples from, and evaluations of, probit-
based likelihoods.

Gibbs sampling. When sampling p(f |r, µ, γ), as was done in (9), a sample is drawn from
a standard Gaussian N (z) that is truncated between zmin = −zr = (br −µ)/

√

1 + γ−1 and
zmax = −zr+1, with

z = Φ−1
(

Φmin + rand (Φmax − Φmin)
)

.

This sample is then scaled with a standard deviation and mean-shifted in (9) to obtain f .
A numerical error arises in this procedure when the argument of Φ−1 evaluates to zero to
machine precision. This happens when zmin and zmax are both sufficiently small or large so
that Φmin = Φ(zmin) and Φmax = Φ(zmax) are either both equal to (or close to) zero or one
with finite machine precision. In these cases the distribution of z is truncated in the tail of
the Gaussian, and will be strongly peaked at one of the ends of the interval z ∈ (zmin, zmax).
We may therefore deterministically set z = zmax if zmax ≤ −5 or z = zmin if zmin ≥ 5, where
5 (standard deviations) is large enough for a double precision Φ−1 evaluation to be precise.

Variational Bayes. The statistic

〈h〉 = µ +
γ−1

√

1 + γ−1

N (zmax) −N (zmin)

Φ(zmax) − Φ(zmin)
(10)

becomes numerically unstable when zmin is sufficiently large or zmax is sufficiently small,
and asymptotic expansions are needed for the last term for the two limits zmax → −∞ and
zmin → ∞. As Φ is a monotonically increasing function and

Φ(zmax) − Φ(zmin) = (1 − Φ(−zmax)) − (1 − Φ(−zmin))

= Φ(−zmin) − Φ(−zmax) ,

the largest term in numerator (by an exponential factor) will be Φ(zmax) for zmax → −∞
and Φ(−zmin) for zmin → ∞. Using a similar argument, one of the terms in the numerator
can be dropped.

The application of l’Hôpital’s rule leads to N (z)/Φ(z) → −z as z → ±∞, but a more
precise approximation can be obtained by keeping additional terms of the power series of
Φ(z) for z → −∞,

Φ(z) = −N (z)

(

1

z
− 1

z3
+

3

z5
− 15

z7
+ · · ·

)

.

When the power series is combined with the geometric series −z
1−a = −z(1 + a + a2 + · · · ),

where a = 1
z2 − 3

z4 + 15
z6 − · · · , and the dominant terms kept, the approximation becomes

N (z)

Φ(z)
→ −z − 1

z
+

2

z3
for z → −∞ .
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We therefore get 〈h〉 = µ − γ−1/
√

1 + γ−1 (zmax + 1/zmax − 2/z3
max) for zmax → −∞ and

〈h〉 = µ − γ−1/
√

1 + γ−1 (zmin + 1/zmin − 2/z3
min) for zmin → ∞. To double precision one

may use quite large values for swapping to the asymptotic regime, for example zmax < −35
and zmin > 35.
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