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1. Introduction

• Discuss the basic collaborative filtering task.

• Discuss low rank what has been especially shortcomings Gaussian likelihood and MAP.
Of course mention honorable exceptions.

• Discuss alternatives to low rank and discuss state-of-the-art on netflix.

• I would like this paper to focus entirely on our model and not making so many
comparisons. We limit to citing other especially icml Gibbs paper.

Training the model generally involved finding the best rank K approximation
to the N × M target matrix R. A number of probabilistic factor-based models
have been proposed.

1. Hofmann (1999) does Probabilistic Latent Semantic Analysis.

Other collaborative filtering work:

1. Marlin (2004) does:

The remainder of the paper is organized as follows: Section 2 describes the Bayesian
hierarchical model, Sections 3 and 4 describe inference in this model with Gibbs sampling
and variational Bayes, respectively. Section 5 describes the experiments with the model on
the Netflix prize task. We conclude in Section 6.
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2. Probabilistic model

There are three elements in the hierarchical Bayesian model we use for the collaborative
filtering: 1. An ordinal regression likelihood function which maps a latent variable h to
probabilities for the discrete ranks r in such a way that the ordering is preserved, 2. a
probabilistic model for latent variable in terms of a low rank matrix factorization and 3.
hierarchical prior distributions for the low rank matrices. These elements are described in
the following.

2.1 Ordinal regression likelihood

Ordinal regression arises when a choice of preference is made. An item with a five-star
rating is generally regarded to be superior to one with a four-star rating, which in turn is
better than one with a three-star rating. In the true sense of the word there may be no
definition of “distance” between preferences; we can merely say that class A is preferred
to class B, which is preferred to C, etc. Models for ordinal regression should therefore
reflect both the discrete nature and natural ordering of the data. Such models hold an
advantage over models which merely transform the problem into a regression problem, as
the probability of a certain discrete rating can be computed.

For ranks or ratings r = 1, . . . , R, partition the real line into a number of contiguous
intervals with boundaries br,

−∞ = b1 < b2 < . . . < bR+1 = +∞ ,

such that interval (br, br+1] corresponds to discrete rank r. If some space may use another
word: ‘space’ is a mathematically loaded one!—in this paper entries in a low-rank
matrix—is mapped to values f on this line with some continuous mapping, the stochastic

ordering on the space is preserved. If f falls in rank r’s interval, we know with full certainty
that rank r is observed, and the conditional probability of r is therefore

p(r|f) =

{

1 if br < f ≤ br+1

0 otherwise
= Θ(f − br) − Θ(f − br+1) ,

where Θ(·) is the step function, i.e. Θ(·) = 1 for a non-negative argument and zero otherwise.

Uncertainty about the exact location of f can be modelled by for example p(f |h) =
N (f ;h, 1). Averaging over f in p(r, f |h) = p(r|f)p(f |h) gives

p(r|h) = Φ(h − br) − Φ(h − br+1) , (1)

where Φ(x) =
∫ x
−∞N (z; 0, 1) dz is the cumulative Gaussian density or probit function.

Another interpretation of this likelihood function is to view p(r ≥ r′|h) = Φ(h− br), so that

p(r = r′|h) = p(r ≥ r′|h) − p(r ≥ r′ + 1|h) .

When only two ranks are present, (1) becomes the familiar binary classification likelihood1.

1. Other sigmoid functions, like the logit σ(x) = 1/(1 + e−x), can equally be chosen. The probit function
is especially convenient for tractable inference, as will become evident in following sections.
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Let rmn denote the rank for item (movie) m = 1, . . . ,M and user (viewer) n = 1, . . . , N .
The ordinal regression model maps a continuous latent variable hmn to probabilities p(rnm|hmn).
For generality we may include the set bm for each item m to the model param-
eters. We keep them fixed so skip for now. The probability of observing ranking rmn

can also be written as

p(rmn|hmn) =
∏

r

[

Φ(hmn − br) − Φ(hmn − br+1)
]δ(rmn=r)

(2)

using the δ-function to pick out the r = rmn term. The likelihood defined over a training
set of ranks D = {rmn|(m,n) ∈ tr.set} is

p(D|h) =
∏

(m,n)

p(rmn|hmn) .

2.2 Low rank matrix factorization

A simple popular choice Refs here for modelling the latent variable is matrix factorization

hmn = um · vn + ǫmn

with ǫmn being the residual and um and vn being the vector (factor of length K) associated
with items m and user n, respectively. In matrix form H = UT V + ǫ, with U being a
K × N user coefficient matrix, and V a K × M item coefficient matrix.

The model can be justified by the fact that the decomposition is low-rank, i.e. K is
much smaller than both M and N . This means that we performing lossy data compression
and thereby hopefully extracting the essential structure in the data. In simple low rank
decomposition approaches, prediction on a test case (m′, n′) is performed by simple vector
multiplication um′ · vn′ . In the Bayesian approach adopted here the predictive distribution
still relies on such a dot product.

Recently it has been observed by Salakhutdinov and Mnih (2008) that with a proper
regularization through Bayesian averaging it is advantageous to use a low rank decomposi-
tion with more parameters K ∗ (M + N) than ratings |D|, the data set size or number of
non-missing entries in H.

For the latent variables we use a simple normal distribution with a shared variance γ−1

for all data points:

p(hmn|um,vn, γ) = N (hmn ; um · vn, γ−1) . (3)

It turns out the performance of the model will essentially only depend upon the choice of
the γ parameter and K, see Section 5.

2.3 Hierarchical Bayesian priors

The model parameters we need to specify priors for are U, V and γ. We will use a
standard Bayesian hierarchical treatment which allow for simple and robust inference. Gibbs
sampling and variational Bayesian inference are simple with exponential conjugate family
distributions. Robustness with respect to the actual choice of hyperparameters comes almost
for free for large data sets because the likelihood will dominate over the prior. Explicit
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expressions for the distributions used are given in Appendix B. We let each item factor
have normal distribution:

p(um|µu,Ψu) = N (um;µu,Ψ−1
u ) (4)

with a Normal-Wishart priors

p(µx,Ψx) = N (µu;µ0, (β0Ψu)−1)W(Ψu;W0, ν0) . (5)

So the factors are conditional independent given the shared mean and covariance. We
use a completely analogous model for the user factors. The hyperparameter of the Normal-
Wishart (β0,W0, ν0) will have to be specified by the user. Our settings and the parametriza-
tion of the the distributions used are given in Appendix ??. The inverse variance parameter
γ is non-negative so a Gamma-distribution is a standard choice:

p(γ; a0, b0) = Γ(γ; a0, b0).

Summary of the model. The joint distribution of data and model parameters

θ = {h,U,V, γ,µu,Ψu,µv,Ψv}

is: using the definitions in equations (2), (3), (4), and (5)

p(D|θ)p(θ) =
∏

(m,n)

p(rmn|hmn) p(hmn|um,vn, γ) · · ·

∏

m

p(um|µu,Ψu) ·
∏

n

p(vn|µv,Ψv) · p(µu,Ψu) p(µv,Ψv) p(γ) .

Predictive distribution. If r is on a numeric scale we can determine 〈r〉, else
just the probability of r taking on a certain rank, e.g. A, B, etc. The optimal point
estimate from the model in a least squares sense is the expected prediction for r = rmn:

〈r〉p(r|D) =

R
∑

r=1

r p(r|D) =

R
∑

r=1

r

∫

p(r|θ) p(θ|D) dθ .

Since the aim of the aim of the Netflix prize is to minimize the root mean squared er-
ror (RMSE) this is the best point estimate to use. The summation over r for constant
parameters

R
∑

r=1

r p(r|θ) =
R
∑

r=1

Φ(hmn − br) − R Φ(hmn − bR+1) =
R
∑

r=1

Φ(hmn − br)

shows that we only need the marginal distribution p(hmn|D) to make predictions. We can
further integrate hmn out explicitly to show

R
∑

r=1

r p(r|um,vn, γ) =

R
∑

r=1

Φ

(

um · vn − br
√

1 + γ−1

)

.

This expression should then be averaged over p(um,vn, γ|D) in order to make predictions.
Gibbs sampling and variational Bayes approaches to this is given in the two sections.
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3. Gibbs sampling

Gibbs sampling amounts to sampling from the conditionals of the model sequentially. Under
some mild conditions this will sample from the posterior distribution (Robert and Casella,
2004). we can loosely mention these here. . . We go over these in turn and summarize
with pseudo-code for the sampler. Apart from the latent variables these are standard
updates.

Factors.

um ∼ N



um;Σm



Ψuµu + γ
∑

n∈Ω(m)

hmnvn



 ,Σm



 , Σm =



Ψu + γ
∑

n∈Ω(m)

vnv
T
n





−1

where Ω(m) is the set of users for item m. A similar update exist for vn. The important
point here is that in order to sample factor m we only need γ and the variables directly
connected with m: {(vn, hmn|n ∈ Ω(m)}. This suggest an obvious order of the updates
where we sample the latent variables when needed rather than storing them, see pseudo-code
below.

Latent variables. Sampling the conditional for the latent variable

p(hmn|rmn,um,vn, γ) ∝ p(rmn|hmn)

requires one evaluation of a unit interval random number, one random normal number,
two evaluations of Φ and one of Φ−1. It is possible to avoid the normal but that requires
changing the likelihood function to a step function. To derive the sampler we introduce the
“noise-free” latent variable

Φ(h − b) =

∫

N (f ;h, 1)Θ(f − b)df

For any m and n, which we omit here for brevity, the joint marginal distribution of r, f ,
and h, given µ = u · v and γ, is

p(r|f) p(f |h) p(h|µ, γ) =
[

Θ(br+1 − f) − Θ(br − f)
]

N (f ;h, 1)N (h;µ, γ−1) . (6)

Density (6) can be sampled from in two steps, f |r and h|f . The distribution f |r is a
truncated normal:

p(f |r) =
N (f ;µ, 1 + γ−1)

[

Θ(br+1 − f)− Θ(br − f)
]

Φmax − Φmin

with Φmax = Φ

(

br+1−µ√
1+γ−1

)

and Φmin = Φ

(

br−µ√
1+γ−1

)

. We sample p(f |r) using the cumula-

tive
f = µ +

√

1 + γ−1 Φ−1
(

Φmin + rand (Φmax − Φmin)
)

.

The desired sample is obtained from:

p(h|f) = N
(

h ; (f + γµ)/(1 + γ), (1 + γ)−1
)

.
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Algorithm 1 Gibbs sampling

1: initialize U, V, µu, Ψu, µv, Ψv

2: repeat
3: for items m = 1, . . . ,M in random order do
4: sample hmn|rmn,um,vn, γ for each n ∈ Ω(m)
5: sample um|hmn,vn, γ,µu,Ψu

6: end for
7: for users n = 1, . . . , N in random order do
8: sample hmn|rmn,un,vm, γ for each m ∈ Π(n)
9: sample vn|hmn,um, γ,µv,Ψv

10: collect statistics for γ: ∆n =
∑

m∈Π(n)(hnm − um · vn)2

11: end for
12: sample µu|U,Ψu and Ψu|U
13: sample µv|V,Ψv and Ψv|V
14: sample γ|h,U,V using b−1 = b−1

0 +
∑

n ∆n

15: until sufficient samples have been taken

Normal-Wishart and gamma. For the Normal-Wishart prior, we sample for µu and
Ψu from

µu,Ψu ∼ N (µu;µ, (βΨx)−1) W(Ψu;W, ν) ,

where

µ =
β0µ0 + Mx

β0 + M
β = β0 + M

W−1 = W−1
0 +

β0M

β0 + M
(u − µ0)(u − µ0)

T + MS ν = ν0 + M

S =
1

M

∑

m

(um − u)(um − u)T u =
1

M

∑

m

um

and can sample for µv and Ψv in the same way. For the gamma distribution we have

γ ∼ Γ(γ; a, b) a = a0 +
|D|
2

1

b
=

1

b0
+

1

2

∑

(m,n)

(hmn − um · vn)2 .

Pseudo code The pseudo code is given in algorithm 1. Note that

• Using a Gaussian likelihood instead of ordinal regression simply amounts to replacing
hmn by rmn.

• The variational Bayes algorithm given below will have exactly the same structure. All
sampling steps are replaced with updates of sufficient statistics.

• An efficient data structure for this algorithm stores the data twice such that we can
easily access the rating of the sets Ω(m) and Π(n).
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4. Variational Bayes

Variational Bayes aims at approximating p(θ|D) with a simpler distribution q(θ). The
simpler distribution is typically a factorized distribution in the exponential family. We are
really replacing a complicated Bayesian network with a simpler factorized one. . .

q(θ) is found my minimizing the variational free energy, and can be obtained through
the VBEM algorithm lots of details & ref.

The factorized distribution is

q(θ) =
∏

(n,m)

q(hnm)
∏

m

q(um)
∏

n

q(vn) q(µu,Ψu) q(µv,Ψv)

Apart from latent variables all updates are standard. We will not give pseudo-code for this
algorithm since it has exactly the same structure as for Gibbs sampling.

As we only need 〈hnm〉 when updating the variational distributions q(um) and q(vn),
we don’t need to define a distribution for it, but only determine its mean online. . .

We let q(um) = N (um; 〈um〉,Σn) and q(vn) = N (vn; 〈vn〉,Ξn). The factorized approx-
imations are also Normal-Wishart, parameterized with µuVB

, βuVB
, WuVB

, and νuVB
:

q(µu,Ψu) = N (µu;µuVB
, (βuVB

Ψu)−1)W(Ψu;WuVB
, νuVB

)

Latent variables.

q(hnm) ∝ p(rnm|hnm) exp
(

〈log p(hnm|λn,xm, σ2)〉q(λn)q(xm)

)

∝ p(rnm|hnm)N (hnm; 〈λn〉T 〈xm〉, σ2)

〈hmn〉 = ...

Factors The full update is:

q(um) = N



um; Σm

[

〈Ψuµu〉 + γ
∑

n∈Ω(m)

〈hnm〉〈vn〉
]

, Σm





Σm =

(

〈Ψu〉 + γ
∑

n∈Ω(m)

(Ξn + 〈vn〉〈vT
n 〉)
)−1

,

where 〈Ψuµu〉 = 〈Ψu〉〈µu〉 = νuVB
WuVB

µuVB
.

Because of spatial constraints we only store a diagonal update, and constrain Σn and
Ξn to be diagonal! For the Normal-Wishart prior the updates will look slightly different.
We have q(umi) = N (umi; 〈umi〉,Σmi), with

Σmi =

(

〈Ψu〉ii + γ
∑

n∈Ω(m)

(Ξni + 〈vni〉2)
)−1

〈umi〉 = Σmi

{

〈Ψuµu〉i + γ
∑

n∈Ω(m)

〈vni〉 (〈hnm〉 + 〈vni〉〈umi〉 − 〈v〉 · 〈um〉) · · ·

+ 〈umi〉〈Ψu〉ii − 〈um〉 · 〈Ψu〉i
}

.
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Note: 〈Ψu〉i indicates column i of 〈Ψu〉, and 〈Ψu〉ii diagonal element (i, i). We also use
〈vni〉〈umi〉 − 〈v〉 · 〈um〉, which is equivalent to −∑j 6=i〈vnj〉〈umj〉.

are we going to include gamma?

q(γ) = · · ·

Wishart update

µuVB
=

β0µ0 + M〈u〉
β0 + M

βuVB
= β0 + M

W−1
uVB

= W−1
0 +

β0M

β0 + M

(

〈u〉 − µ0

)(

〈u〉 − µ0

)T
+ MS νuVB

= ν0 + M

S =
1

M

M
∑

m=1

{

Σm +
(

〈um〉 − 〈u〉
)(

〈um〉 − 〈u〉
)T
}

〈u〉 =
1

M

M
∑

m=1

〈um〉

5. Netflix prize

5.1 Hyperparameter settings for the Netflix prize.

For the Netflix problem we have ranks 1 to 5. We set the boundaries to be equidistant with
steps ∆b = 4: (b1, . . . , b6) = (−∞,−6,−2, 2, 6,∞). Any other equidistant choice would lead
to the same result with appropriate re-scaling of the remaining parameters.

The actual setting of the hyperparameters of the Normal-Wishart prior for the mean
and variance of the factors, N (µu;µ0, (β0Ψu)−1)W(Ψu;W0, ν0) are not very important
because there is so much data to learn from so any reasonably weak prior will by overridden
by the data. To reflect this, we simply set the following values: the mean of the mean prior
is µ0 = 0, the mean-precision coupling parameter is set to one β0 = 1, the precision matrix
to the identity matrix W = I and the degrees of freedom to the dimensionality D = K.

The most important parameter in the problem is γ, the inverse variance of the h latent
variable distribution. This parameter will to a large extent determines the degree of fitting
to the training data. We first used a0 = 10 and b0 = 10−2 in the gamma-distribution prior
corresponding to a prior expected variance of 〈γ−1〉 = 1/[(a0−1)b0] = 9. The motivation for
this choice is that it roughly gives a baseline expected root mean squared deviation (RMSE)
of
√

(〈γ−1〉/δb = 3/4. This value is well below the Netflix prize goal. When we ran with
these parameter setting for K = 50, γ converged to something like 0.119 with very small
fluctuations since it is well-determined by the large amount of data. It turned that keeping
γ fixed at value ∼ 0.8− 0.1 gives somewhat better performance. We ascribe this to the fact
that the training and qualifying data are not sampled from the entirely same distribution.
The qualifying set contains more recent ratings and there has been a substantial upward
drift in the ratings over time. We thus depart from a purely Bayesian approach for this
parameter and have not looked into or tried to model this interesting aspect of the Netflix
prize problem.
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5.2 Performance results

6. Conclusion

Appendix A. Asymptotics of the error function

Appendix B. Standard distributions

We use the following standard distributions: Normal N (·|µ,Σ) with mean µ and covariance
Σ, Wishart W(·;W, ν) with scale matrix W and ν degrees of freedom and the Gamma
distribution Γ(·; a, b) with shape parameter a and scale (inverse rate) parameter b. The
explicit expressions (up to a normalizing factor) for the Wishart and the Gamma are

W(Ψ;W, ν) ∝ |Ψ|(ν−D+1)/2 exp(−1

2
tr[WΨ])

Γ(γ; a, b) =
1

baΓ(a)
γa−1 exp

(

−γ

b

)

.
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