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Overview

• Deliberate nonlinear design: the tradeoffs

• Controller: Architecture & general considerations

• Loudspeaker model: Alternatives & affects on controller

• Constructing a nonlinear compensation controller from a loudspeaker 
model

• Tuning the controller 

• Optimal design with nonlinear control
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Typical Microspeaker

• ø15 ~ 20mm  x 3~5 mm

• Standard electrodynamic motor

• Usage: Ring tones, FM radio, hands-free telephony

• Key engineering parameters
• Voltage sensitivity
• Size (including enclosures)

Vc

Rear volume Internal pressure
p tc( )

+ ( )x td

15~20mm

2~8cc
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Deliberate Nonlinear Design:
Shortening Coil Height

• Optimisation of coil height
• Short height provides 

higher sensitivity
• Large height reduces 

nonlinearity, sensitivity
• Simulation of basic parameters 

vs. coil height

this form 
most 
practical



5 © NOKIA          Presentation_Name.PPT / DD-MM-YYYY / Initials Company Confidential

Change in basic parameters vs. coil 
height

VAS increases with 
decreasing height

Assumptions:

• Coil length 
proportional to 
height

• Constant 
resonance 
frequency
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Small-signal sensitivity vs. coil height
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General considerations for a controller

• Many audio products require DSP (MP3, dig. cellular telephony)

• Analogue:
+Can be designed from physical model (s-space; differential eqs.)
–Drift problems
–Not (easily) programmable

• Digital:
+Programmable
+Cheap (free?) HW – if already required
– Algorithms very different from physical model

Signal
Processor

Power
Amplifier

LoudspeakerAudio 
input signal

processed
audio signal

power
audio signal

acoustic
sound field

+
-
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Architectures for nonlinear 
compensation

Feedback  control

• Force y(t) to follow v(t)

Feedforward control

• Model loudspeaker, compensate 
accordingly

Adaptive feedforward control

• System identification to update 
feedforward controller

Controller 

Feedforward
processor Plant

Input
Control 
signal Output

v t( ) u t( ) y t( )

Controller 

Plant

Input
Control 
signal

Feedback signal

Output

v t( ) u t( ) y t( )

Plant

Plant Model

Input Control 
signal

Output

Plant feedback

v t( ) u t( ) y t( )

y tm( )

y tp( )
Σ-

+

Feedforward
Processor

System ID by 
Adaptive filtering

Controller

Plant = Loudspeaker

10 © NOKIA          Presentation_Name.PPT / DD-MM-YYYY / Initials Company Confidential

Theoretical foundations for nonlinear 
compensation

Strategies (theoretical approach) for digital adaptive feedforward controller:
• Volterra series, discrete-time

• Straightforward nonlinear theory: extension of linear system theory
• Computationally expensive
• Parameters have no physical interpretation

• System ID difficult w/o expensive feedback sensor
• Narmax-model, Neural-Network

• Computationally cheaper than Volterra series
• Parameters have no physical interpretation

• System ID difficult w/o expensive feedback sensor

• Feedback linearisation (inverse dynamics model)
• Parameters with physical interpretation
• System ID by indirect (inexpensive) feedback sensor
• Same computational effort as Narmax model

Plant

Plant Model

Input Control 
signal

Output

Plant feedback

v t( ) u t( ) y t( )

y tm( )

y tp( )
Σ-

+

Feedforward
Processor

System ID by 
Adaptive filtering

Controller

G
eneric m

ethods
M

odel-
based 

m
ethods
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Feedback linearisation

Digital controller design: from plant model

• Continuous time model
• “Digitised” with numeric integrators
• Model built from traditional LPM
• Difficult parameter updating

• Discrete time model
• Easy digital controller design
? How to build model? (Ldspk. LPM is in continuous-time)
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• Combination of electrical and 
mechanical LPM models

• Acoustic dynamics treated 
as mechanical-equivalents

• Parameter variation with 
displacement produces 
nonlinearity

• Chief culprits:
• φ(x): transduction 

coefficient
• k(x): suspension stiffness

• Nonlinear differential equations 
may be analysed by numerical 
integration, other methods.
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System dynamics view

Electrical 
admittance
(blocked)

Mechanical 
receptance

(open-circuit)

Mechano-
acoustic 

transduction, 
radiation

• Linear model
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Adding nonlinear components
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2
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)(sfc

force-factor non-uniformity suspension stiffness non-
uniformity

• Added as zero-memory nonlinear systems to linear model
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DSP implementation of model

• Linear filters needed for:
• Mechanical receptance
• Differentiation

• Other components are “zero-memory”
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FIR filter Mechanical Receptance

• FIR inherently stable –
attractive for adaptive filtering

• Loudspeaker’s mechanical 
dynamics are ‘resonant’

• Inefficiently modelled by 
all-zero filter

Example electrical 
admittance impulse 

response
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IIR Filter for Mechanical Receptance
• Resonant behaviour modelled with low-order IIR filter

• Same structure can be used to approximate differentiation
• Nonlinear-elements are zero-memory systems: straightforward digital 

implementation

• Forms basis for feedback linearisation-based design of nonlinear 
controller
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Inverted digital model

• Algebraic inversion of voltage & displacement described by model

• Basis for nonlinear compensation algorithm

• Describes voltage that would have created some specified 
displacement 1/φ

φ
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Complete nonlinear compensator
Nonlinear compensator
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Parametric drift and uncertainty

• Loudspeaker characteristics change with:
• Manufacturing tolerances 
• Temperature variations

• Parameter drift causes mistuning of feedforward controller
Ø Fatal problem for pure feedforward control
• Controller must be tuned to changes in the loudspeaker

Parameter name Symbol
Temperature Variation 

Coefficient
Manufacturing tolerance

DC-resistance R eb 0.004·R eb ·0°C ±10% 

Suspension damping c d -0.05 ±10

Suspension stiffness k d (none) ±30%

Transduction coefficient φ0 -0.005 n/a
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Tracking Changes in the Loudspeaker

• System identification: Tracking changes using adaptive filtering

Power
amplifier

u t( )

i tc( )

u td( )

p t( )
Σ

ε[ ]n

shunt res.

ic

vc

vc

Adaptive filter
(plant model)

Loudspeaker

Plant

-

• Identified parameters are updated in pre-processor

• Measurement of electrical current, mechanical vibration, or acoustic 
pressure can be measured
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Simulation of effective sensitivity
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• Effective sensitivity calculated as a function of coil height calculated

• Cc is additional amplifier output required for distortion 
compensation
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486Hz
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825Hz
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1074Hz
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3082Hz
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Voice Coil Height

1.2 mm

0.8 mm

0.4 mm

0.2 mm

Original Coil Height

Coil Height = 2 × Magnet Gap

Coil Height = Magnet Gap

Coil Height = ½ × Magnet Gap

Plastic insert

Plastic insert

Plastic insert

Measurement

• Modified voice-coil height samples 
prepared for measurement

• 1.2mm (standard height)
• 0.8mm
• 0.4mm
• 0.2mm
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Linear FRF of shortened-height V-C 
samps.

• Shorter heights provide 
higher sensitivity

• 0.2mm  shows ~10dB 
higher voltage sensitivity, 
+4dB power efficiency
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Compensation of distortion

Measurements from 0.2mm height coil
• Broken: No control
• Sold: With control
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Conclusions

• Deliberate introduction of nonlinearity can increase loudspeaker
sensitivity

• Nonlinearities can be compensated by digital processing

• Optimal design point not fully clear


